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CAICUIATICN OF UNCOUFLED MODES AND FREQUENCIES
IN BENDING OR TORSION OF NONUNIFC_)H/I BE_ABB
By Jdohn C. Houbolt and Roger A, Anderson

SUMMARY

A procedure ls presented for the caloulation of frequenclies and
modes of nonuniform beems in uncoupled bending and torsional vibration.
Based on the principle of the Stodola method, the procedure consisis
of .golving the differentlel equation of equilibrium for vibration by
a method of successive approximations. Basio prinoiples of engineering
beam theory are employed in the method, and the integrations involved
are performed by improved mumerloal methods. "An effort has been made
to perfom all calculations in a manner consistent with the accuracy
to which physical constents in bullt-up beams are ordinarily known,

} Higher modes are readily found by use of the orthogonality
relation between noxrmal modes. The Frequency lsg found simply as the
sguare root of the proportionallty factor existing between modal
deflection ourves in successive approximations. All computations are
tabular in form and are performed mentally or with the aid of a slide
rule. Comparison made with avallaeble oxact analytical solutions shows
that the method gives for practical purposes the. exact answer. Specilal
consideration has been given to the treatment of various boundary
condltions that are found in the vibration of aircraft structures,

The cantilever bedm, the free~free beam, beams with concentrated
messes, beams mounted on springs, beams elastlcally coupled to masses,
end so forth, are shown to be handled with practical simplicity., In
order to serve as a gulde in the solution of practical problems, the
procedures for handling & mmber of different cases are illustrated by
& liberal use of examples.

INTRODUCTION

" In the dynamic analysis of airoraft struotures, the determination
of the natural modes and frequencles is of basic importance. A
number of methods for caloulating modes and freguencieés have been
developed; esach method has certaln desireble features. The cbjeoctive
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of the present paper is to develop a procedure which is readily
learned by anyone fanillar witkh engineering beam theory, ls easy and
guick to apply without the use of complicated computing devices, and
glves results within the rangé of accuracy with which the physical
properties of the structure (mass, stiffness distribution, etc.) can
ordinerily be determined. An adaptation of the successive- .
approximation procedure of Stodola (see reference 1) fulfills these
requirements and has the additional advantage that data necessary for
the analysls of stresges due to vibration ave obtained during the
computations for the modes. In the present paper, this successive-
approximation or iteration method 1is employed to obtain solutions to
the differential equations of equilibrium for bending and torsicnal
vihrations.

The Stodola method, outlined _in reference 1, was ordiginally e
graphical-integration procedure for determining fundemental modes and
frequencies. Burgess presented in reference 2 a numerical procedure
for finding the fundamental frequency of a cantllever, whlch was in
essenceo a series of approximate numorical integratlions to determine
the modal deflection followed by an. energy solution for the freguency.
‘Boukidis and Ruggiero (reference 3) gave an application of the Stodola
~ method, in.the form of a numerical procedure, which permittsd cal-
culation of the higher as well as the fundamental modes and freguenciles
of a free-free beam in symmetrical vibration. Inmherent disadvantages

in the method of higher-mode determination, as presented in reference 3,'

‘however,-have been prointed out by Beskln and Rosenberg in reference 4,
These authors made use of-the orthogonality relation between normal
modes: of vibration, in conjunction with Burgees's numerical procedure,
to determine the higher modes of & cantilever,

. Two -improved methods of numericel integration are presented in
the present paper for . .the solution of differential equations by
iteration. One of the methods 1s a summation process, somewhat

-similar to the numerical procedure of reference 2; the other method

is described by Newmark (reference 5), who used it in beam and column

-analysis and ' called attention to ite applicability ‘to vibration
problems. Both methods are simple to apply and lead to relatively
accurate modal deflections. The frequency is finally found to be the
square root of the proportionality factor existing between modal-
deflection curves in successive iterations.

In order to perform the integrations, the boundary conditions
on the vibrating member must be taken into account. Consideration
hes been given herein to a number of different boundary conditions.
Both the symmetrical and the antisymmetrical mcdes of a free-frese beam
- are treated in detmill., Boundary conditions for the vibration of beams
supported on springs, ‘beams elastically coupled to masses, and so

-

-
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forth will be shown to be handled with practical simplicity. Although
the method can be applied to problems in which bending and torsion are
aoupled, the analysis will not be prescented hersln.

ey IR UL
In order to determine modes higher then the fundamental by
iteration, ccmponents of all modes lower than the one to be determined
must be removed. This operation is performed by use of the orthogo-
nality reletion between normal medes, With this additional step ’
acourate solutions for Higher modes are’ readily obtained.

The basio ét'eﬁs "of 'the iteretion method &nd & condensed procedure
for solving problems will be outlined in the followlng segtlons,
Actual application of the procedure is illustreteéed by a mmfbar of
examples. These oxamples are intended %o sexve as a guid.e {n’the
solutions of practical probleme and at the sams time to give an
indication of the simpliclty attainable with this method of analysis.
All computations ars performed mentally or with the ald of a sllde
rule and comparisons made with the few available exadt solutions
show that the iteration method gives for practical purposes the
exaot answer. A theoretical verification of the amlysis presem:ed
is given in the a.ppend:lx.

.l e ts . - - : o . '.... TN ] 55

SYMBOIS
{ E L ' i T T :
L - Jength of beam; half span for syimmetriocal beems, full span
for unsymmetricel beams o
. Young's modulus of elasticity
G modulue of elastloliy in shear o
bending moment of inertis
I1° msss polar mament of inertis per unit ‘length of beam ebout
- axis of rotation ' .
0 torsional stiffness constant T S
‘. S : : LT KU 4
¥, ! .  Welght of beam per unit length '
g moceleration due to gravity -

m .. mass of beam per unit length ('—8‘5)

L
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S : " shegd

M _bending moment

.T-" torque ,

k : 'disﬁaxloé between stations along 'bea.m '
a, -_ amplitude of nth mode (n = 1,2,3, P

Fn2 GIR.- used. in plaoe of an -bo d.en‘oto very small amplitudes
and T o vezy small emplituds

x o - station coord.ina‘be

oy | elastia Spring constant e;b Jth station.

my -con‘centn_:'ated. mags at Jth station

frn frequency of nth nstural mode '(bend.ing or torsional)

vibration, cycleq .por segond

wy ' circular frequency of nth natural mode of (bending or
toreional) vibmtion, rad.:uans per second, (wn = 2nfn)

el L

equivalent loading

eq
D3 natural frequency of a spring—mass osoilla.tor, radians per
second o - : _
63- deflection at station  J ..

yor¥ general notatlion for deflection

Yn( ) or
(o) agsumed or reasonsble approximate deflection of nth n.lode s
Y, (x), usug.lly written in terms of & upit tip deflectic(ags -
Y, denotes deflection of a given point; Y,' ‘(x)
denotes modal-deflection funotion

Vo oOr '
n( ) exact deflection of nth mode written in terms of a unit
Ip\% tip defleotion; y, denotes deflection of a given point;
yn{x)} denotes modal-dsflection function
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i) :
Y ( or o
deflection of nth mode after 1’ itérations for both
(1)(,&)—( derived wvelues of defleoction and Ya}ues written in
terms of unit tip deflection; denctes deflection

of e given point; Y, {1)(x) denotes modal-deflection
function

(1)
Ia Tl defleotion of nth mode after 1 Lterations where deflection
Y (1) (x) is glven relative to an axis through center of beam end
oo must be corrected to satisfy boundary conditions for
both derd ved. values of deflectlon and values written in

torms of a unit tip defleotion; ¥, (1) genotes
deflection of a given point; '(1)(x) denotes modal~
deflection function

Yo(i) a constant correction to be applied to ¥, '(i)(x), after

ith iteration, when a solution is sought for a symmetrioal
mode of & free—free beam

K(i)x -8 linearly varying correc-bion to be applied'to_ Yn'(i) (x),

after the 1th iteration, when a solution is sought for
an antisymmetirlcal mode of a free-free beam

Yn(i) or
deflection of nth mode after all modes lower than nth mode
¥ (1) (x) have heen removed after ith iteration for both the
n derived values of deflection and values written in
terms of unit tip deflection; yn(i) denotes deflection

of a given point- yn(i)(x) dsnotes modal~deflection
function o

g or o general notation for rotatlon in torsicnal-vibration
problems (with y and Y replaced by ¢ and @
definition of symbols for rotation is similar to that
for deflection)

BASIC STEPS OF AMAIYSIS
Iteratlion Methods

Bending.~ Examination of the differential equation of equi—
librivn for a beam In free harmonic bending vibration
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shows that a beam vibrating in dna of Ite natural modos has an
inertia loading at any polint that is proportional to the product of
the mass intenslty and the deflection at that point. The left-hand
gide of the equatlion represents the elastic restoring foxce of -the
beam and, in the.orxdinary bending theory of beesms, equals the external
loading., The right~hand silde represents the inertla loading whigh
mey be considered at any-instant of time to be sitatically applied.
Deflection functions yn(x) | which satisfy both oquation (1) and the
boundary conditions of the beam are called the natural modes of the
beam. The factor o, 1s the natural frequency in radians Por second.
of vibration of the nth mode.

A curve approximsting the deflection may be assumed end, as
indicated by the right-hand side of the equation, values proportional
to the loading at any poinf Tay be computed directly by muliiplying
the assumed deflection ¥ by the mass intensity et the point.
The factor w2 cen be ignored since 1t 18 a constant and since the
ampllitude of the deflection is purely arbltrary, The values of

mYl(O) then represent the inertla loading at each point, With this

computed loading, a new deflection may be found by any of the known
methods of engineering beam theory such as the direct—integration
method; that is, with the loading on the beam as a starting point,
successive integrations give in turn the shear, the moment, the slope,
and the deflection, '

In the present paper, the process of finding a new deflection
frem an assumed or given approximate deflection ocurve by four
successive numerical integrations is considered one iteration. In
the appendix the new defleotlon is shown to couverge toward the lowest
mode ocmponent present In the assumed deflection. By successive
iteration, s natural-mode deflection curve may be found to an arbltrery

degree of accuraoy.

An 1teration by two different methods for a beam in bending
vibration is presented in table 1. The problem used for illustration
is that of a nonunlform cantilever carrying a concentrated mass., The
summation method is & simple numerical~lntegratlion prccedure to
determine the shear, the mcment, the slope, and the new defleation,
The seoond method presented is a form-of numeriocal integration whioh
:2%65 us? of the concept of equivalent'concentxated loads. (See

lo 1
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Most of the s.téps of an iteration will beoome self—evident on .
inspection of the tabulated computations end the graphical illustrar-
tlions.in figure 1.

For the summation method (table 1), the physical constants. I
‘and n for the cantilever beam are listed in columns 2 and 3, and
the initlally essumed values of deflectlon at each station are listed
in column 4, The beam is divided into equally spaced stations with
the root as station O and the tip as station 10. In the mumerical
‘integrations, the distance M\ between stations may t{xg be carried
a8 a ccmmon :[‘aotor as shown, ~ The loading values mY, which are
proportional to the inertia loading are given in columns 5 and 6.
The shear (column 7) and mcment {column 8) are then found by the
summstion process -indicated in figure 2. Except for the initial .
value, the shear.is found by suscessive addition of the loading
ordinates. The initial value of shear is found by a.ppl.ication of
'bhe following simple equation (i‘rom fig. 2)

Area.:kég'-é—"-'—h) R  -- ,—(2)

- - Addltion sterts from station 10 beasuse the shear 1s known to be
zero there. The mcment is found by successive addition of the shear
va.lues, the addition starts at station .10 whers the moment is zero.
Frcm the  M/I values - {column 9), the slope {column 10) is found
in the same manmer that was used to obtaln the shear except that
integration proceeds frcm station O where the slope is zero.
Successive addition of the slope values, starting at station 0, gives
finally the new deflection (column 11). In order to ccmpare the new

. deflection with the assumed deflection, the new deflection is given
in the next column in terms of a unit tip ordinate. Burgess's method
{reference 2) consists of adding successive station ordinetes but

. &.clear plwsioal interpretation of hls procedure oa:mot readily 'be
made.

Since the beam has been divided into equal intervals, mess
concentrations on the beam will not, in general, be looated at
statlion points. The procedurs, then, is to distribute a concentrated

, mass proportlonally to two adlecent statlon points on the assumption
' that the mass is supported by a simple beam between the two pointe.
When the statlon points are spaced veasonably close, this local
redistribution of <the loading produces no signifioant change 1n 'bhe
" derived deflection, S

"~ For curves ‘thalt cannot be reasona.'bly approximated by straight
lines between stations without resorting to & large munber of stations,
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another method of performing integrations nuterically has been
employed. In reference 5, the equivalent-load method is presented; -
this method mekes use .of the properties of a second--degree curve for
camputing the system of concentrated loads at the stations which
produce the true moment at each station and for computing the concen
trated values of M/EI which ceuse the ‘deflection to be correot at
each -station. The method 1s easy to apply and gives results which
are quite acourate even when ourvaturea are a.ppreoia‘ble between
stations.

For the equivalent~load method (table 1), the equivalent—loading
diagram (coluwmn L4) is computed by using equations (a) and (b) given
in figure 3. These eqiwtlons were taken from reference 5 and are
immediately applicable only to curves confimuous over at least two
station intervals. In order to keep. mYy 0) (column 3) from having

a discontinuity at sta'bion 3, therefore s the conventrated mass
(column 5) is handled sepa.ra.tely ‘ Summation of the equivalent loads
glves the average shear between each station and summation of the
shear gives the itrue~-moment dlagram. The equlvalent values of M/I
(E is carried as a cammon factor) are then Ffound in the same menner
a8 the equivalent loads with the exception of the value at station 3.
The discontinuity in the shear diagrem at station 3 causes an abrupt
change in-slope of the moment dlagrem. The equivalent M/I value

at this station is camputed by use of equation (c) in Pigure 3, whioh
is derived by epplying squation (a) to the ordinates of the smooth
curve on either slde of the abrupt ohange. ‘The deflection (column 11)
is found after two swmatlions.

" Either the summation method or the equivalent—loed method may be
used for an iteration. The summation method is simple and quick
and gives good results for the lower modes and frequencies of vibration.
The method 'of equivalent loads, on the other hend, is particularly
sulted for hlgher-mode d.etenniz;ation. For the higher modes, curvatures
are appreciable in the functions to’be integrested, and the greater
inherent accuracy of this method resulis in better approximetions to
the deflections. . .

l .

Torsion.-— The differen‘bial equa:bion in torsional vibration is

.—, rs [ d¢n(x)] 2 Ip¢n(x) | (3)

This equation is analogous to egquation (1) for- ‘bending vibrations.
The Jeft-hand side of the equation represents the elastic restoring
" force, and the. righb—ha.nd. sid.e represents the inertia Joading. The
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lteration process in torsion 1s similar to that in bending; that is,
a curve of angular dlsplacement is assumed and on multiplication by

" the mass polar moment of* inertia, a measure of the inertia torque
loading is obtained. By direct integration & .new angulav—displacement
curve ie found. Only fwa integrations need Pe parformed in an
1teration for torsional problems as compared-with the’ four integra-
‘tions for bending.problems because the differential eguation of
equilibriuvm.in torsion is of the second order, whereas the. equation
in bending is of the fourth ordev. e .:_ﬁ_

A typical iteration for a cantilever in torsional vibration 1s
‘glven in tabular form in table 2 and presented graphically in figure L.
Integration of the torque-losding ovdinates (column 5) by the summation
method glves & value of torque (column 6) midway betwéen each
station, -After. dividing ‘each torque ordinate by its corresponding
value of . J, eanother summation gives. the rotation (cqlumn 8). The
sumnation in each integration beging at the station where the function
 belng determined, is kmown to be zeYo. Only the summation nethod of
integration is used in torsional problems becauvse it is not convenient
" to determine equivalent concentrated: inertie ‘torque loads that will
give the correct internal toraue at specific points on +he beam.

Treatment of Varicus Boundary Conditions

. Bending.- The dboundary.conditions encountered in vibration
problems are the same as those found in problems in statics; that is,
the beam may have any combination of free, pinned, elastically
restrained, or fixed ends. TIn addition, if the beam and its support
conditions are symmetrical about a denter line, the equilibrium
conditions existing at the center line depend on whether the beam

. is vidrating in symmetrical or antisymmetrical modes. For such beams,
the two types of modes are found separately by considering the beam
to Pe cut. at the center and by arplying the: proper-boundary conditions
for each type.

In the iteration process, the functions determiried by mumerical
integration will be correct only if all the Jboundary conditions are
satisfied. In the simplest cases, such as a cantilever or a
symmetrical simply supported beam, wheve the shear, moment, slope,
and deflection are esch known to’ ée zero at specific points on the
" beam, no difficulty 1s encountered in performing integrations. Sum-
mations simply proceed from the. points where the functions are known
to be zero. In other types of beams, there may be more than one known
boundary condition on some of the functions: and none at all on others,
Fer those functions without boundary conditions, the point at which
the function is zero'is generally not known and g special treatment
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must. therefore be made in -the:intégration process. Although the
treatment will vary with ‘éach problem,.& géneral method of approach
- ‘may be outlined, -The method-1is to sketch the probable deflection,
shear, moment, and slepe diagrams in:that order. In doing so, the
conditions that must be satisfied td make each diagram follow from
the preceding one-will become evident. It will be seon that an
arbitrary constant of integration is introduced when no boundary
conditions are known for a particuler function. The constant is
then carried along and evaluated later when two boundary conditions
are known for one of the other functions. In some probdlems, short-
cut celculations may be made to evaluate the constant immediately.

‘As an illustration of the general approach, considsr the .case
of a free-free beam symmetrical about its midpoint. In figure 5 the
series of diagrams on the right represent the actual variation of the
deflection, loading, shear, end so forth, along the half aspan of
: the beam for the first symmetrical ‘bending mode, Ne boundary condl-
tions are known for the deflection; the shear is zerc at both the

© -+ midpoint and the tip, the moment: is zero at the tip, and the slope is

‘zero &t the midpoint. Since an arbitrarily asgumed déflection will.
-not, in general, producé & loading which'will cause the shear to be
zero &t both the midpoint and the tip, the deflection has been
assumed 1in two parts as shown in the two diagrams on the left. A

variable part Y +(0) giving deflections relative to the center of

the beam 1s assumed, together with a constant part Y (0)5 the
magnitude of which is to be detérmined later by the shear boundary
conditions. This separation of the deflection into two parts ie
vermisaible since the principle of superposition holds for problems
of this type. _ :

Loadings are computed for both deflections (each deflection is
multiplied by the mass variation given in colum 2 of table 3) and the
shear diagram for each loading is found by integration from the tip
invard., In.order to make the shear zerc at the center line, the
ordinates of the S, dlagram must be adjusted to make the center-line

ordinates of the S' and S, diagrams.equal in magnitude and

opposite in sign; the two . diag“ams then added give the true
shear diagram S (fig. 5). If desired, it is now posasidble at this
point to correct the assumed deflection and to obtain the correct

loading. Since the value of shear 8, 18 proportional to 1, (0)

the adjusted’ deflectibn '§~ © added to ¥, (0} gives the -

B ~, . _o- . . -

(
deflection ¥, 8).' When the true shear diagram is known, the moment
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and slope diagra.mé are Pfound without any t_lif:‘;‘ioul-by. For the new
deflection int_egrati?n procceds from the center line which gives
the deflections Yl' 1)” yelative to the center of the beam, The

correotion Yo(l) must now be determined. This corregtion is found
frem Yl'(l) in the seme msmmer that Yo(o) was determined from

Yl'(o). After Yo(l) is determined, Y_i"(l) 1s corrected to give
the botter modal approximation Y3(l), Note that the process of
detemining the corrections Yo(i consists aptually of performing

e large part of anothexr iteration. The method Just Gesoribed for
integrating and satisfying boundary oconditions is analogous to
direct analytlcal integration of the differentlel equation, where
the unknown constants of integration are carried along until encugh
boundery values are known to permit them to be evaluated.

A short—cut caloulation is derived for the preceding case from
the following consideration.” It 1s recognized that in order to
prevent translation of the beam +the negetive and positive loading
areas must be equal., (See loading in fig. 5.) Ixpressed mathe—
matically the gondlition is R . -

L T . - - - - .
fmyn dz.= 0 SR £
0O .

wor if Y, is broken into two parts, as in figure 5, equation 4 ©
becomes : o :

L _ _
f w(Y,' - ¥,) éx =0 . (5
0 ' '
and Yo is found +o be . . . . o
1, § _
[Fa . :
- . _

(6)
L
f m dx
0O

In equations L to 6,and whenever convenient in the equations to follow,
the superscripts indicating the iteration mumber have been purposely
omitted for simplicity in presentation. The equations are of general

Yo=
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form and apply regardless of the number of the iterstion, The
numerator.and dencminator of equation (6} can conveniently be evaluated .
in terms .of  the .ptation ordinates by’ means of, tha flollowing equation
which is, darived in the appendix:

i

A = L2§~ (o 38a + Lo 5cb +6'# & + L.508 + 0,76 + 1.50g

+hie1 +.1.503 0, 38k) i ' (7)
Equation (7) for oomputing the total area under & curve i used

hereinafter beoause of its simplicity end accuracy. Thls equation

is based on the properties of a fifthvdegree curve and lg therefore

applioable to finite intervels in sets of five. After Yn has been

assumed, Y, can be computed direotly by use of squation (6) and

then the correct deflection Yp = Yn' ~ Y, can be found. This short—

out precedure is illustrated by the pumerical example in teble 3. A
complete-iteration is given in the section "EXAMPIES".

’

Tn table 4, the geneial approach is illustrated for the first
antisymmetrical mode of a’'symmetriocal free--free Dbeamn, The dlagrammatic -
presentation of the data is shown in figure 6. As illustrated in
the column of diagrams on the right-hand side the deflection and loading
are known to be zero at the center of the beam and the shear ls zero
at the tip. The moment must be zero at boith the center and tip, and
no boundary values are known for the slops. The difficulty in this
set of boundary conditlions is that an arbitrarily assumed deflection
will not produce a loading which will cause the moment to be zero
at both the center and the tip. The moment boundary conditions can
be satisflied, however, if the assumed ourve 18 @lven a proper rotation
about the midpoint of the beam, A linearly varying correotion

(O)x is therefore integrated along with the.assumed deflection

l'(o), as shown in the two left~hand columns in figure 6, until
the moment disgrems are obtained. The two dlagrams are addad

(fig. 6) to give the tiue moment diagram. When the corxrsction to be
applied is known, the corrected assumed deflection, the correct
loading, and the Bhear can be obteined.,

In the next step the.interior point at which the slope 18 zoro
1s unknown, so a zero point 1s assumed and integration for the slope
procesds from this point in both directions. An axbltrary constant
correction 1s also assumed, Integration of the incorrect slope
diagram and the constant correction gives the incorrect deflection

'Yl'(ll and the linearly varylng correction K(l)x. The correcotion



NACA TN No. 1522 13

k(Lx to the deflection Yl'(l) is d;etermined. in the gaiie manner
that was used to find the correction K(%x to the deflection ¥;1{0);

that 15, with ¥30(Y) ena E(Mx, integration procesds in the next
iteration (not shown in the table) until the moment diagrams are’
found, from which the true correction can be found. by the condition
that the center-line moment must be zero. .

Again en equation can be derived for cdérrecting the’ assumed
deflection before an iteration and the number of integrations 1is
thereby reduced. In order to preVent rotation of the beam sbout an
axis at midspan perpendicular to the plane of vibration, the mament of
the inertia loading about this axig must be zero, Written mathemati-
cally in terms of the two assumed 1qa'c'£ings, the condition 18

/ sty -eRzazzo” T (@)
0 )% dx |

where K 15 the slopa of a linear cofrection. ‘Solution for X _‘
glves .

L .
. Jr I‘;ﬂn’-(i) dx ) .
= et . (9) )
mx? dx ' T -
Fote |

This equation can be convenlently evaluated numerically by use of
equation (7). The use of eguation (9) is illuastrated by the example
in tats:l.‘a:h A complete 1'beration is given in a subgequent emmple.

As an indica'bion of the’ flexi‘oility of the general method of )
approach for handling boundary conditions, consider next a besm fixed
at’ ode end and simply supported at the other end. The logicel
procedure for performing an iteration on such a problem is glven in
figure 7. "The process should become clear from a sbudy of the sketches
and the step—by»—step outline of the 1teration procedure.

The roregoing illustrations indicate that rather complica'bed
and even statlically indeterminate structures can bs handled if they
are broker up into their basic camponent parts. In the examples that
are presented subsequently; the method of adding elastic restraints,
such as springs, to the beams is shown. The solutions given for these
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prohlems make use of ah sl gimilar to equation (6),
which arb deriyed froq Ps zzgugkgpcgegggg 5 ag éhgsg Bh gwg in’ f
figures 5 ggg DA . .
Torgion As was trde eh bending‘-vibmtior; problems no

difficulﬁies ‘arise in thg Mapdling of the ordinary boundary conditions
for problems in torsion with the éxcebtion .of the Lree—frep and
certain fixed-end beans, For these cases a procedure ‘analogous to
that in Yending must be used . - .

'
+,

. ' .
- .
o Lo

. Removal of Lower—Mode Components

Bendigg.» In the determination of ‘higher modes by the iteration
process any components of mocdes lower than the one to be determinsd
must be removed from the essumed or given deflectlion. Unless this
procedure is followed before each iteration, convergence will tend
toward the lowest-mode camponent present in the assumed deflection..
Assuming that the shapes of the lower modes are known, the compohents
of each mode present in the assumed higher-mocde shape can be found by
ugse of the orthogonality relation Vetween the normal modes of vibra-
tion. The equation for computing the amplitude &, of any mode yp

present in a given deflection curve Y, is

L
J man ax

L
Y0

This equatidn is given in reference 1 and, for completeness, a
derivat}on 1s included in the present appendix, :

(10)

an =

The procedure for removing lower-mode components ig illustrated
in table 5 where the fundamental-mode component ig subtracted from
an assumed second-mode siape for a cantilever. A graphlcal repre—
sentation of this procedure is given in figure 8. The integrals in
equation (10) are evaluated in colums 5 and 8, and the fundamental-
mode amplitude is computed at.the bottom of the table. The assumed
second-mode shape mlnus the ccmponent of the fundamental mode is given
in colump 11 in terms of a unit tip deflection. The same procedure
applies when n~l lower modes are being ramoved from an agsunption
for the deflected shape of the nth mode, .

Torgion.- The method for removing lower-mode canponents in
torsional problems is the same as that for bending
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Frequenoy Detemina.tion

Bending.-— Once a close approxima.tion fox the a.eflection of &
given mode has been established, the frequency of vibration can be
determined. For bending, the fréquency may be found from the following
equation

(1)
a2 = — (11)
yn(i + 1) Cy
where
yn(i) value of deflection of a point on beam before iteration

yn(_i + 1) value of deflection of point after iteration when . .
' ‘fTundamental mode is being determined; whereas, it 1s
deflection of point after iteratlion and removal |
of lower-mode oomponents for higher-mode determination

" (The deflection yn(i) is usually written in terms of & unit tip
deflection and, when equation (11) is used, ¥y 1+ 1) i the

gbsolute value of the deflectlion found in en iteration. Before the

next iteration is begun, however, yp (1 + 1) is for convenlence

written in terms of & unlt tip defleation.) The use of equation (1l1)
in the frequency detemimtion Qf a beam is 1llustrated 1n & su‘bsequent
seotion “EXAMPIES." - . . .

. The frequeéncy may a.lso be ieterminecl :E'rom the following equations
which are derived in the appendix:

N )

2 S
M ax : | )
— X

. Jjwmy(i)y(i # 1) g . |
W = (13)

J;Bu+182w
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The moment 1? in equation (12) is the moment which wresults fram the
loading my, Both equations are derived from the enorgy reletions

of a beanm in vibration and have 'been uged by other investigators.

Since the frequency, as glven by these _equatlions, is evaluated from
the entire deflection curve, values of deflsction which are é&s accurate
as those reguired by equation (11),where the frequency is evaluated
from the deflections at a point, are not necessary. Thus, if only

the frequency is desired in & glven example, a good value may be

found from elthexr of these equations by use of & dellection which is
found from one to two less lterstions than those that would normslly
be required if both mode and frequenoy are to be delermined.

Torsion.—~ Frequenoy determination in torsion is analogous to -
that in bending. The frequency may be found from the following
equation S

i (1) .
W= = N : SRS _ o (k)
¢ ( i+ 1)
where
¢ (1) va,lue of rota.tion of a station on the beazn before lteration

¢ (i * 1) value of rotation of station after iteration for fundemental- *

‘mode determination; value of rotation of station aftex-
- fteration and removal of lower-mode oomponen‘bs Tor
A e higher-mode d.etemination.;

SUMMARKY OF FPROCEDURE

Thus far, the more Important steps in the analysis have bheen
explalned in some detall. In order:to facillitate the actual working
of problems, the various steps will be summarized in their logical
order. The procedure will be given for computing the modes and
frequencies of a beam in bending vibration. An analogous prccedure
is used for torsional problems.

Fundsmental Mode.~ The stops for computing the fundamental mode
are ag follows:

(1) Divide the beam into a conveniel;zt nuber of eq_ual stations.
If only the fundemental mode is to be samputed, six to eight stations
will be sufficlent. ‘If higher modes areé to be determined later, ten

L
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stations should he yged because any errors present in the fundamental
mode will have an effect on the accurasy of the higher modes, With

_the beam divided into ten stations, a very accurate fundsmental mode

cen be obtained. TFrom mass and moment—of-inertis distribution plots,
read off the values of these verisbles at each stetion, Any large
concantrated ma.sses should be distributed to the neerest sta‘bion

points. ‘ -

: (2) Assume a rea.sona.‘ble approzima.tion 0 the fundamental mod.e.
A convenlent way is to sketch the deflected shape of the beam and
read off the deflection ordinates at each statiom.

(3) Perform an iteration with proper regard to boundary conditions.

(1) Use the deflected shape from the previous iteration and
sucoesslively repeat step 3 un’oil 'I:he denired degree of convergence is
obtalned.

(5) Compute the frequéncy by egquation (11),

Higher Modes.— The s*beps for oompu*ing higher mod.es ave as
folldws: —

(1) Divide the beem into equal stations. Tor conveniencs in
applying-the integration formuls (equation (7)), which is based on
a fifth-degree curve, the number of stations should be a maltiple of
five. In order to retain the same degres of ascurasy for each higher
mode, the mmber of stations must be increased when successively
higher modes are being determined. For the first four modes, however,
ten statlions are sufficient for englneering agecuracy if the lterations

_are performed by use of the method of equivalent loads, Determine

the mass and moment—of-inertia values at each station.

(2) Sketch the most probeble shape of the higher mode to be

' d.etemined. and read off the valuees of deflectlon &t each station.

{Each successiVe higher mode has one additional nodal point.)

(3) Remove all lower-mode camponents from the sssumed higher-
mode defleation, :

(%) Perform an Literation with proper regerd to boundary conditions

.and remove lower-mode oocmponents from the derived deflection.

. (B) Successively vepeat step 4 until the desired degree of
donvergence is obtained. It msy be found that all the lower-mode
components need not be removed after each iteration. (A more complete
explanation as to when lower modes ought to be removed is presented

" in the example on the determination of the third mode of a cantilever.)

Bofore and after the final iteration all the lower modes should be
removed., .



18 . NACA TN No. 1522

(6) Compute frequency by equation (11).

EXAMPLES
The solution to a number of typical problems ls illustrated by
examples, These examples are presented to serve as e guide when
actual problems of the type. they represent are being solved and each
one need. not be studied to understand the baslc proocedure. given in
this paper. The examples are:

Exemple 1-Nonuniform cantilever, first bending mode
Example 2..Nonuniform aqantilever, first torsional mode
Example 3-Uniform cantilever, second bending mode
Example U4 ~Uniform cantilever, third bending mode

Example 5--Free-—-free beam with concentrated masses, flrst
symmetrical. bending mode

Fxample 6—Free~free beem coupled to masses through springs, first
symmetrical bendlng mode

Exemple T-Free—free beam with concentrated masses, first anti~ .
symmetrical bending mode

Exemple §--Beam with concentrated mass and mounted on spring, first
bending mode

Example 9 —Beam with concentrated mass end mounted on spring, second
bending mode

Exemples 1 and 2 are simple l1llustrations of the lteration
process for bending and for torsion, Examples 3 and 4 show the
removal of lower-mode components in the determinstion of higher modes.
A compariscon is given with the exact solution for modes and frequencies.
Exemples 5 to T 1llustrate the memmer in which boundary conditions
are satisfied for the vibration of free—free beams. Boundary condi-
tions for beams coupled to springs are illustrated in exemples 8 and 9
and the results are compered with exact solutions. In every example
one or two complete iterations are shown in detail, and results of
any other iteratlions nedessary for convergence are indicated.
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Example l: Nonuniform cantilever, first bending mode.— The
physical constents and first iteration Tor example 1 axre given in
table 1 and the solution is completed in teble 6. TFeach step follows
very alosely the procedure outlined for fundrmental-mode determination.
1t should be noted that convergence to the fundamental mode in
cantilever beams ls yvery ragpld, After only two lteratlons the ratio
was taken at each station of two successive deflectlons, ocolumn 12,
and it is seen to be fairly constant. A compailison is given in
figure 9 between the a.ssumed. d.eflection and bhe calculated fundar-
mentel mode.

Example 2: Nonunlform cantllever, first ’corsiona.l mode .~ An
example of beam torsional vibration is presented in teble 7. The
first iteration is the one uwsed to 1llustrate the lteration process
for torsion (table 2). It is seen-in colwms 2, 7, 9, 11, and 1h in
table 7 that convergence to the fundamental torsional mode for =
cantlilever 1s slower than for the corresponding mode in bending. The
rate of convergence in the iteration method ls & function of the
seperation of the frequencies of the natural modes and, for a canti-
lsver, the frequencles of the torsional modes are not as widely
separated as the frequencles of the bending modes. The greater
number of ilterations needed in this partiocular exanple can also be
attributed in part to the large dlfference in the shawes of the
assumed mode and derived mode. ({See fig. 10.) The labor involved,
however, in finding a torsicnal mode is comparahls to that in bending
since only two integrations are needed for an lteration.

Example 3: TUniform cantilever, second bending mode.— A uniform—
boam case 18 presented in table U so that & comparison can he made
between the exact solution and the results obtained by the iteration
method. The procedure used is that outlined foxr higher modes.
Previously computed ordinates for the fundamental mode sre listed in
column 2 end the assumed second~mode ordinates are glven in golumn 5.
Becavge the beam is uniform, the solution is scmewhat simplified as
the mase m and moment of insritia I ocan be ignored during the
iterations and are taken into account only in the f{requency compute~
tion. By comparison of columms 35 and 38 it can be seen thet the mode
obtained alfter two lterations 1s good enough for moat practical
burposes, If modes higher then the second are to he calculated, how—
ever, more agourate values should be obtained for the deflectlion of
the second mode than those gilven in column 35. The results of the
third lteration are shown in the sketoh of Pigure 1i{a), and they
present a olose check on the mode and frequency obtained by an exact
analysis. The denominator of equation (10) is evaluated in column 40
for use in the third-modes determination, presented in the next
sectlon. The faot that column 42 sums to zero means that the derived
second mode 1s orthogonal to the Pundamental mode,
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Example 4: Unifomm cantilever, third bending mode.— The third
mode and frequendy computations for the same uniform beam are
presented in table 9. .The assumed third mode ls given in column 2
and the fundemental mode and derived second mode from table 8 gre
uged in camputing columns 3 and 5. -After each lteration a large
Tundamental-mode component must be removed from the derived deflec—
tion. It is’'difficult to remove completely all traces of lower
modes, and during each iteration the residusl lower-mode ccmponents
are amplified; in this case in the ratios (w3/wl)2 for the first

mode and <w3/w2)2 for the second mode. For a cantilever the
ratio..'(ws/wl)e 18 very large and after one ilteration the Tirgt—

mode impurity has been greatly amplified (column 23). The actual
amount of emplification of the second-mode impurity (column 24%) is
small enough to be negligible. - Some labor could have been saved iIn
this example by postponing the vemovel of the sscond-mode component
untll after the segond iteration. After three iterations and removal
of the lower modes, the derived third mode (column h6) and frequency
as oamputed by equation (11) glve an ihdication of the high accuracy
attainable by the procedure desaribed herein when the beam is divided
into ten stations., Figure 11(b) shows the assumed third mode, the
computed mods, the exect mode, and a comparison of ‘the exact and
ccmputed frequency. - )

Exemple 53 Free—free besm with concentrated masses, first
symnetiical bending mode.— In table 10, the first symmetirical bending
mode and fregquency of a uniform free—free beam' carrylng concentrated
messes are computed. A convenlent assumption for the deflection ls
one with a zexo center-line ordinate (column 5), In order to insure
that the shear be zero at the center line, the assumed deflection is
then oorrected according to equatlion 6, the use of which has been
illustrated in table 3, With the computation starting at -the corrected
defleoation, given in teims of & unlt +tip deflection and multiplied
by the constant mass of unity (column 8), iteration is performed in
a straightforward manmer. The new deflection (column 15) is agaln
glven with a zero center—line ordinate and corrested (column 19) by
use of equation'6. Two iterations are sufficient to determine +the
mode and frequency. The computed deflected shepe is shown in figure 12,

Example 6: TFreo—free beam coupled to masses through springs,
Tirst symmetrical bending mode.~ Example 6 (table 1ll1) is the same as
example 5 except that the concentrated masses are elestlcally oonnegted
to the beam by springs. The equation used o make the assumed loading
(column 5) satisfy the shear boundary conditions is glven in figure 13
end is developed in the appendix. This equation contains terms
involving the unknown coupled ‘frequerncy, whioh necessitates an assump—
tion for thils frequency before each iteration. Unless the natural




. -

NACA TN No. 1522 21

frequency P 32 of the spring-mass system nearly coingides with the
wnlmown frequency w2 of the coupled system, the equation for Y,

is relatively insensitive to lncorveot assumptions for o2, In the
general case, & mors acaurabe sssumption is made for w2 before
each succeeding iteration on the basis of a freguency ccamputed Lfrom
the preced.ing lteration.

The system under consideration in this example involves a
relatively stiff Yestraint between the masses and the beam. The
unlnown fréquency will be only slightly less than the frequency
obtdined in example 5 which considers the mass rigidly commected to
the beam. In that e le (see table 10) the square of the frequency
was found to be 11,6 Erad.ians /5e0)7; sonseguently, an hssumption of
11 (redions/sea )~ was moade for this esse, The initial assumption for
the deflection 1s the 'déflegted chepo obtalned in the last lteration
in table 10. Onde the aoryect inertia loading is computed (teble 11,
column 8) -iteration proceeds ns before., Since the assumed deflected
shape and frequency were very close {o thelr actual values, one
iteration résults in & uniform ratio at each station {column 20)
between the deflectlon and the amsuned deflected shape, The camputed
deflection is shown as the dashed curve in figure 12, Elastic
coupling between the beem and masses is seen to reduoce the frequency
of the entire system and to cut down the deflection of the center
ol the beam relative:-to the ends. In table 11 a computetion is also
presented for the force in the spring :E'cr the given beam—-bip
deflection. _ ) _
... .BExample T: Free-—-free 'bea.m with ooncen't.rated. masses, Liret
aentisymmetrical bending mode.— hepble 12 illustrates the solution for
-the. antisymmetrical modes of the same free--fres beam analyzed in
exemple 5, A dsflection is assumed {(column 7) and by means of
equation (9) this deflectlon is corrected to satisfy the moment
boundary gonditions. This procedure has been illustrated in teble 4,
With the correct loading (colwmn 12) the integrations are stralght~
forward until the slope (column 19) is to be determined. The point
of zero slope 1s unknown and 1s assumed to be between stations 3 and k4,
Integration of the assumed slope diagrem resulte in incorrect deflec—
tions (column 20).. A tiue defleotion is computed as before, however,
which satisfles the moment boundsry conditions 'and automa.tioally has
the corrsct slope at each point. The frequency was computed after
the second iteratlion. The computed defleoted shape is showvn in
figure iy, :

Example 8: Beam mounted on ipring, fi-ﬂst bending mode,—- A first
mode. molutlion for the problem Of & beem vibrating on & spring is
given in teble 13. The boundary condltions are the same as for the
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symuetrical free-free beam modes except that the unbalanced inertia
loading on the beam must equal the spring reaction. This condition
is patisfied when the distance Y, in figure 15 is computed by the
equation given In the figure whioh l1g developed in the appendix. In
order to solve this:equation an estimation of the probable value of

w? 1s first necessaxy. The i‘ollowing congidexations will ald in
making thie estimate, If the spring is infinitely etiff, the lowest
mode end frequency is the fundamental for the half beam vibrating as
a cantllever. If the spring has a finite stiffness, however, one
natural frequency of the system will bhe lower than the cantilever
frequency. The more flexible the spring is relative to the beam
stiffness, the lower the frequency of the first bending mode will be
relative to the cantilever frequency. The limlting case is that in
which the beam is considered to have infinite stiffness and corres-
ponds to an inelastic mass vibrating on a spring. Call this frequensy

of vibration pJa which is given as. pj -—!1 ~The lowest natural
bending 'frequenéy @ of the system will always 'be lower than p 3

The example worked in table 13 is for the case of a flexible
beam carrying a heavy concentrated mass snd mounted on & relatively
stiff spring. The cantilever and spring-mess frequencies are first
calculated in order to form a bagis for estlmaiting the probable

natural frequency. Since pde is several times larger than mlzoe.n‘b’

a natural frequency only slightly lower than the cantilever frequenocy

was assumed. After Y(O) 1s calculated by use of the formula glven,
the suoceeding steps of an iteratlion are the same as those for ‘the
symmetrical modss of & free~frge beam: The trial frequencies calou~
lated in columnt 17 show that the estimated frequency of 5.9 used in

calculating Yl(l) is as agourate an assumption as could have ‘been
made. After the second lteration a few trial caloulations for wn
(column 28) showed that an estimated freguency. of 5.93 gave the proper
values of Y1(2). A third iteration is indicated with the resulting

frequency and mode glven in columns 31 and 32." ' In figure 16 the
.deflection is presented with a comparison between the exact and
computed frequencies.

Exemple 9: Beam mounted on spring, second bending mode.- A
second-mode solution for the.seme beam-mass--spring system 1s presented
in teble ‘14, The proceduke used is that for higher—mode determination.
The most reasonable assumption for the deflection (column 5) is a
curve having a unit deflection at the tip and center. The first-mode
component present in the assumed ourve is calculated and removed and
one lteration performed. The deflection {column 16) is given in terms
of a zero center-line ordinate. This ordinate must be computed by
use of the equation which was used in the Tirst-mode determination.
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In order to solve this eq_ua.’c.io‘:i“;" Ly frequency must first be estimated.
A reasonebly acceptable value may be obtalned by eguating the total

. 3 vt

inertia forge { w2 mye(o)ﬁ dx | of the aesumed loading to the spring

force (oenter deflection times spring donstant) and solving for @2,
This calculation is shown in teble 14%. The acourecy of w® depends,

of course, on the closensas of. the assumed ouxrve to the actual
"deflection. By use of this value of cua,- the equation for Y, in

figure 15 is solved for Y, (1), The value of Yo(l) is subtracted
from the value of ¥, (l) (oolumn 19) end the first-mode component

-1 again removed and another i'bera.tion performed. In each suoceeding
iteration & better value of ®° is found by consldering the center-

~ line shear boundary conditlon end finally ®w® gonverges to ‘the -fre—

- quenty as ccmputed by equation (1l). In this example, three iterations
are sufficient for oconvergence, The determined mode and freciﬁendy

are presented in figure 16. 4 oompa:ison is given between thé ex&ct
and ccmputed frequency, . }

e’

CONCLUDING REMARKS ' T

The examples presented have shown the manmer in which the
determination of vibratlorn modes and frequencies is related to beam-
deflection theory. By successive epproximetion, solutions are
reedily found to an accuracy consistent with that to which the phyesical
constants in bullt-up beams are ordinarily known. Although exaot
solutions, for practical purposes, are obtained .to the differentisl
equetions, the equations themselves are based on 11miti.ns assumptions.
Since the equatlions do not include the effects of structural damping,
rotary inertia, and deflection due to shear, whioh are known to cause
a change in the shapes and frequencies of the higher modes, engineering
Judgement must be used to interpret solutions obta.ined. from these
equations. . . oo

Langley Memorial Aeroneautical Lebovatory
National Advisory Commlttes for Aeronautics
Lengley Fleld, Va., July 23, 1gh7
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Detexmination of the Deflection by the Iteration Method

- ] e
*

Differential equation of équilibriuin.— The differential equation
of equilibri_m_ of a 'bea.m 'iln _free"hamol_iio bending vib'ration 15

16 left- ha.ncl side of 'bhe equa.tion represents the elastio restoring
i‘orces of the beam aid in thé ordinary bending theory of beamd equals
""bhe e:htemal loa.ding, Fo,,. beamc. in vibration the loading is oomposed

" -6f tnertis forces which at eny instant of time ma.y be considered as

statlic forces given Dy the expraemsion on the right-hand side of the
equation. Equation (Al) has solvtlons y =y, and associated
characterlistlic velues w = ay,, where ¥n @esoribes the deflection
of the nth mode of vibration and Wy ig the frequency of vibration
of that mode, Except for some simple cases these solutions cannot be
obtained by exagt analysis. It is-possible, however, to solve

. sq_uation (AJ,) by an. iteration .process in whlch, successive approxima—

" "; of equation (Al)., Except for the. faotor

ﬁions a,:..e i‘ound, eagh a.ppro;cimtion moxre alosely representine; 'bhe
-l;,rue sqlu'l;:[on. s , )

df..

b § Cul¥

In%egr&tion of’ d.ifferential equation.- Suppose that so&ne

a.r‘bitra.r;r,i\uwtion ¥ 1is substlituted for . ;5 on the right—hand. side
w which may Dbe ignored

‘beca.uae X _ie purely ar'bitrazy, the equation would ‘be.. ,

» o s i .- B L}

‘12 (EI—EZ . (a2)

This equation can be solved by direct integretion, Assume for the
moment that the solution is y = F(x). From the static loading concept
indlicated 1n the previous geotion 1t .follows that a beam with &

loading wymy, would have a deflection y,. A beam loaded with
forces my, would therefore-have a deflsction yn/cnn?' Thus, 1f ¥

were an exaot solution — say y, - of equation (A1), the solution of
equation (A2) would be simply :
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y=5G <3 . (43)
O

In general, Y is not the exact solution y,, énd the proportion—

2lity given by. equation (A3) would not be, sonstant along the Yeam.
Because the progess of finding a new curve from a given curve is a
. converging process, however, cuxrves givi:‘:g a sonstant ‘proportionality
may be obtalned even though the sterting curve 1 epproximate. The
newly found ourve is used to determihe the loading, and another
deflectlon 1s computed, This. operation is repeated until two suc-
cessively determined deflection curves are of constant. ratio to each
other. The final curve found is .the fundamentel or first mode (n = 1}
of vibration of the system, This. process of finding the ocweve 1s
commonly known as the Stodols method. The faot. that the process is
converging and converges to the lowent Jqode will be shown in the next
section, In the section "Frequenoy Determination" +the way in which
the method 1s made to converge to a given higher mode of vi‘bration _
is shovn . _ o o e
Proof of convergence of the iteration process «— The a*bitrarily
chosen ocuxrve Y may .be. expressed in terms of & serles 1nvo;l.ving the
normal modes of vi‘bra'bion of the’ eystem, thus

Y(O)(x) = alyl(x) + agyp(x) + a3y3(x) e (A4)
If this series ie. substituted for Y on the right—hand. aid.e o:E‘
equation (A2) and integration is performed, then, by the principle

of superposition, the solutlon will 'be

] L.’

Y(l)(x) =--2-y 1) +w22y2(x) s 2yx) s L (85)

v w3 i o -

If the process ls repeated suwaocessively with the ‘newly found curve _
as the approximation to the deflection, the ourve found after 1 B
lterations will be

1) . ¥y . .

(1) AT : ae‘ a8
T (x) = a—)—;-e—i-yl(x) f:ur-a-gi-yg(_x) * ;;321-%(:;) I (.éé)

This equation may be written in the following form
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' Y‘“(X) = 121 [alyl(x) +<%i>2i&25’e(x)'"'(%)21&3?3(2‘) + ey .](A'?)

©

Since wy < wa, Wy < W3, o . 4y inoreasithg 1 oocuses %ihe higher-m Jo
camponents to decrease, and the first’}node Y, &ppedars more and

more pure. The greater the separation of W1 Woy Wz « + 0, tho
stronger will be the convergence to ¥j.

Removal of Lowen-Mode Components

The iteratlve process will alweys cause convergence to the lowest
mode present In the originelly essumed deflection. In equation (A7)

( w] )Ei cul_)21 Wy ])21 ‘ -
< | = * Not only, therefore, is the
Pn o+ 1, (“’n < \eq - s e ’
- component of each higher mode reduced during an iteration but also
the amount of reduction beoomes greater with each successive highor
mode. Thus,” 1f the components of all the modes lower than the nth
mode were to be removed completely fram a given deflection ourve,
the solution would necessarily have to converge to the nth mode
(the lowest mode remaining), Provided that the shape of a glven mode
is known, the ccmponent of that mode in a given curve may be found
conveniently by use of the orthogonality of ‘the normal modes of
vibration. Buppose that the given curve is expressed by squation (AY4)
end that y, 1s the mode For-which the coftponsnt is being determined.
Multiplication through by my,(xz) gives v S

myn(x)¥(0)(x) = aymyn{x)y1(x) + agnyp(x)ya(x)
e e arlzﬁyne(x) e (48)

Integration over the length of the beam g:l.vés the relation

ML L
: JO mynbe) (O (x) ax = I) anmvnegx)_.dx C (49)

sinoe the y,-texms are orthogonel funotions defined by the orthogo—
nallty condition .
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f Lmym(z)yn(x) x =0 vwhen m#n (a10)
Q.

In the integrals to follow, the limits of integrations have been
cnitted but should be interpreted to be over the half span for all
beams symmetrical about a center line and over the full span in
wnsymuetrical beams. Solution of equation (A9) for &y, - glves

f (1700 ) e

. {(a11)
f my, 2(x) ax
With =, knowm, the nth mode component any,(x) may be readily
removed from the given curve by subtresotion, thus
¥(0)(x) aryn(x) = a3y3(x) + aoyo(x) + . «
+ By Tp1(x) + By Tnealx) + . .. | (a12)

Trestment of Free-Free Beams

In the case of symmetrical vibrations of free—free beesms the
first normal mode (pure translation, frequency equal to zers) is mot -
an elastic mode but must be lncluded when an arbiitrary curve is
developed in a serles involving the nommel modes. Thus, the series
for en arbitrarily chosen deflection Y'(x) 1is :

YUx) =Y, alyl(x) + aaye(x') + a3yB(x) e © (A13)

vhere Y, 1s simply a constant. Since 1t is deslirable to have the
chosen curve in terms of the elastlc modes alone, the value of Y,

must be determined. In oxrder to prevent translation of the beam, the
inertlia loading in each symmetrical mode of vibration must sum to
zero over the span. The following relation must therefore be true:
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e

< (A1)

. Multiplioation of eg_uation (Al3) ’ohrough by m and integrating over
‘the length of the beam by use of equation (AlY) yilelds

myt(x) dx = qxo dx (A15)

* . whioch when solved for .‘fo gives

.I;:Y'(x)"dx ‘ o . :
X sneel . (A16)

Y, may nov be ‘subtrected fram the assumed deflection, thus

¥(x) = ¥'(x) -~ ¥, = agy (x) + a'eya(_x) + a.3y3(x) oo oo e (ALT)

The resulting deflection is now given iIn terms of the normal elmstic
modes of a free~free beam, satisfies the equilibrium condition
(sequation (A15)) and may be substituted in the right-hand side of
equation (A2), The expression mey then be integrated without .
difficulty. S _ :

For convenlence ,in"bhe',‘ present solution for symmetrical modes of
free--free beams, the assumed deflection Y!'(x) is always given in
terms of a zerc center—line ordinate. With this assumption, ¥, then

reﬁresen‘cs the center-line defléction.

In the case” of antisymmetrical vibrations of free—free beams,
the first normsl.mode is a pure rotation with freguenoy equal to zero.
An arbvitrarlily assumed curve, representing the defleotion of an
antisymetrical mode end developed in a serdies involving the normal
modes; must inclids a teym oorrespond.ing to d.efleotion dus to
rotation; 'bhus ’ :

Y'(x) = Kx + a;7,(x) + a.eye(x) + a3y3(x) e e (A18)
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vhere K is a slope and Xx +therefore is a linearly varying
defleotion, In order %o prevent rotation, the moment of the inertia
loading about the midpoint of the beam must equal zexo. Thus,

f my,{x) &x =0 - (A19)

Multiplication of equation (Al8) through by xm and integrating
over half the length of the beam by use of equation (AlS) ylelds

f:mﬂ"(x) dx = | Kx°m dx (a20)

which, solved for XK, glves

!:mi'i"(x) ax
K= (Aal)
fxem ax

After thls value of X is multiplled by x, Xx may be subtracted
from the assumed deflsction; thus,

Y(x) =¥ (x) - K = &J._Vl(x) + agyp(x) + a3y3(x) e o. . '(A22)

This expression may now be substituted in the right-hand side of
equation (A2) and integrated without difficulty.

‘.'L‘reatmént for Beams Coupled to Springs

In oxder to analyze structures whioch contain an elastic restraint,
such as a spring, the equilibrium of forces exlisting between the
structure and the restralnt must first be considered. For the oase
shown in figure 15, a deflection cannot be asswmed directly because
the equilibrium condition (spring foroe equals unbalanced shear at
center lins) may not be satisfied. On assuming the variable part
I*(x) of the deflectlon, however, the constent part Y, may be
determined by eguating the total inertla load to the force in the
spring; +thus,

2

o? | a¥(x) ax = ~a¥_ - (a23)
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Since Y(x) has been broken up Anto. the variable part Y'(x) and
the congtant Y equation {A23) ey e wvitten

2 fm[Y’(x) - Yo] dx = -a¥, (a2k)
Solutiondfqr Y, gives-

f r’ (x) dx
Yo =T N (a25)

- %
5 + j’urdx

e

The generalizatioen of equation (A25) for a apring placed at the Jth
station along the beam is

Y '% ' (A26)

where 84 1is the deflection of the beam at the Jth.station relative
to the center of the beam and s is the elastic comstant—of the
epring at the Jth station, Subtraction of Y, from Y'(x) then
gives - : :

Y(x) =Y (x} - ¥y = 8971(x) + epyp(x) + agy3(x) (a27)

-which 1s the arbitrarily assumed curve corrected to satiefy the shear
boundary conditions.
.7 For the case of 8 free-free beam coupled to spring-mdss |

oscillators (fig. 13), the total inertia load must again equal the
forece in the spring. At .any instant of time o

w‘z:"ImY'(x)' dx + F =0 “ S (428)

vhere F 1s the spring force., For convenience, the equilibrium of
forces at maximum displacement: ‘will be considered. If equation (30)
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in reference 1 (p. 59) is multiplied through by aj8, and then
@y, is replaced by F, ap by (¥, + 83)', and ®, by Py, the
following expression is cobtained for the s_pring foxce F:

. ¥ =(3%>2 o (o + ‘5.5)

2
1.5
Py

Since the natural frequency o 3 of the simple oscillator 1s given by

(429)

py® = 24 (430)
my

equation (A29) may be written
my (-¥g + 85)
=40 d7 2
() o
P3 ‘

Substituting this va.lue of F in equation (A28) and writing Y(x)
in’texms of Y'(x) eand Y, .glves the expression

(431)

a@f mEi"(x) - Yo] ax + my(Yo + 8y) ®? = 0 (A32)
( K

1- (2N
Pj
which can be solved for Yo

maS
fml"dx+ 47J

") " (A33)
fm dx + _—"LT

(PJ)
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The generelization of equation (A33) for any number of elastically
mounted masses symmetrically placed at 'J polnts along the beam 1s

i ‘;_ ma4d
'(x) -
| fmx x} ax 4 /,:65“‘%32—
Yo = '. - 51 ) (AB)"')
. -fmdx-i- --—f-}-'j—-—-z
2~ (55

Subtracting the value YO from the veriable defleotion Y'(x) gives

Y(x) = TMx) = Yo = a7y (%) + agplx) + agyy(x) + 0 0 0 (435)

which represente an arbltrarily assumed deflection of the beam
corrscted to setisfy the equilibrium condition between beam and

spiring. ,
Frequenocy Determination
In equation (A7) all terms except the first become negligible
when 1 18 large enough, and the equatlon reduces simply to

) (x) = 2 ayyy(x) (436)
oy 21

If one more iteration had been performed the equation would have
reduced to

(141) 0y o1
Y (x) N a4y (x) (A37)

Divislon of equation (A36) by equation (A37) gives for the square
of the frequency
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y(1)
Y(i-l—l)

®2 = (A38)

Thus, after enough lterations have been performed to ceuse the higher-
mode ccmponents to become small, the ratic of two successively found
defleotions is the square of the natural frequency of the mnd.ameh’ca,l
mode of vibration., ; o .

» Although equation (A38) denotes the frequency of the i‘tmdamental
mode, 'a similar equation can be derived for the higher nodes. Suppose
that the nth mode is being determined and that 1 i1terations with
the negessary removal of lower-mode components have been performed;
then, with the removal of all modes lower than the nth mode after the

ith iteration, the resulting ourves may be expressed by the equation

yn(i)(x) e1y1(x) + eoypl(x ) PR anVn(x)

e e Boye(x) ¢ ... ____.n(A39)

The smell coeffioclents €1s €ps WD to 8, remain because in the
numerical procedurs each mode lower than the nth mode cannot be

" removed precisely. These values, however, are very small in comparison
with values of aj. Iterating once again, beginning with equation (A39),

gives the curve

Yn(i+l)(x) = _G_J_-_yl(x) -+ ..e_e..ye(x) t oo oo in—?n(x)
w12 wo? : wn?

33
G e

If —%- is factored out of the right-hand side of equation (A40), it
1ls seen that, in comparison with ofns the first-mode component has

been emplified by the factor =2\, the second mode by the Fagtor
Wy . :
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2 t- : i
g% s and so forth., Removal again of all modes lower than the
nth mode gives then the deflections

;',"n(i—!.l)(X) = ‘qul(X) "'7 nEQYg(JC) + e o . (‘J‘?r'f‘lé" yn(x)

*oee iﬂ% yplx) + « v o o (am)

where 1, np ave extremely small in comparison with :hé.

. On .
Division of equation (A39) by equation (Akl) and neglecting all
terms dn - ¢, 4, and 1 glves, as a close approximation to the square

of the Ffregqueéency. the relation
' .Yn(i)
yn(i+l)

(Ak2)

g : con2

Alternate Method of Frequency Deteirmination

Another method for.determining the frequency can be found from
the energy expresslons for a beam in vibration. It can be shown that
the potential energy of hending U for a beam in Its maximun
displaced positlon 1s given by the expression

= .}; (--.«Y-) ' (AL3)

and the kinetlc enerxgy of the beam V as it vnasses through the
gquilibrium position is

V = % wCmy® dx’ ' {Alh)
These energles must be egqual, hence
2
% El(i-%-é) ax = »}; omy? ax (aks)

Solution of this sguation for w? gives
2

/= (—““ ) =

(.02 =

(AL6)
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With the use of the relation M = EI-?"J-?E, equation (AL6) may be

[Ba
2 uBE (ALT)

o

As applied to the iteration process, the moment M in equation (AkT)
is associsted with the deflection that is derived. That is, y in

equation (A47) corresponds to y(i+l), the deflection derived in an

iteration, whexre y_(i_) is the given deflection or the defleotion
used. at the start of the iteration. By use of equation (AL2), the

frequenay may be written in temms of y(i) and the moment rather
than y(i+l) and the moment. : .

written

Substitution of the expression for y(i"'l) fron equation (AL2)
for y in eq_uation (Al:-"{) and solving for a.\n gives

op? = fmﬁ-"ml i e

M2
EI

Thus, after a reasonahly good approximsition to the deflection of a
mode has been established, the moment which results from a loading
computed from this defleotion is found, and by use of equation (Ah8)
a good value of the frequency of that mode can he determined.

Equation (AL2). expresses the frequency in terms of the
successively found ordinates at any station along the beam.
Equation (A46) can be transformed so thap the Ffrequency is expressed
in terms of all the ordinates along the beam, The transformation
is given hereln as a metterof interest. On integration of the
numerator by parts, equation (Ak6) would appear _ . .

sl
o
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For the (i1 + 1) deflection this equation would be

Ey(1+1) JL, _Exiiii_ ax
2 ax? :
[4> g — (A5O )

[ (i+l) )

S IE (i+l) were the exact deflection, it would neoessarily have to
satisfy eqpation (A1); thus,

é (1+1)

.-i% m(x)'u&?— = olm(x)y(i+) (A51)

With the use of equation (Ak2), squation (A51) may be written

.‘fé EI(x) ﬁL(_i_‘;l_) ~ m(x)y(t) (a52)
dx : . A -

Substitution of equéf;oh—(ASE) in equation (A50) then gives
for the frequency the relation

Jy(0)y(252) oy
0.)2 = (A53)

[a[sten] ?

This equation gives, in effect, a weighted average of the frequencles
glven by eguation (A42) for all the points on the beam. The accuracy
" of the freqiency obtained from equation (A53) will in general be

greater than that obteined from equation (Ah2). Any local error In
deflection will cause no appreciable error in the frequency as given
by equation (AS53); whereas an error in the deflection of a point will
cause & llke erxror in the frequency if detemmined by equation (ak2)
with the deflections at that point.

V
i

Iteration as Applied to Torsional Problems

For torsionel problems the dlifferentlal. equatilon of equilibrium
is
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_ﬁ I:GJ %__%]: méIp¢ o -(A.5l+)

This eq_uation is ana.logous to aqua.tion (A1) for bending vibrations.
The left—hand side of the equation represents the elastic restoring
forces and the right-hand side represents the inertia loading., &
procedure similay to that used In the.case of bending vibrations 1s
used to solve equation (A54); that is, a curve representing the mode
to be determined ls assumed end is substitubed on the right-hand side
~and, by direct integration, & new curve is found; and so on. Only
two integrations need be performed ‘in an lteration for torsional
problems as compared with the four for bending problems because the
differential equation of equilibrivm in torsion is of the second order,
whersas the equation in bending 1s of the fourth order. The proof of
the process for obtalning a solution by iteration follows closely
that given for bending vibratlions and., therefore, no further
discussion will be glven.

Derivation of Equation Used in Numericel Evaluation of Areas

Suppose the area under a given curve is to be determined. In
general, any part of the curve over a finiter intervel may be spproxi~
mated by & seqond—, third—, or higher-degres curve; the acouracy of
approximation, of course, inoreases with the degree of the curve,
In the present analysis a fifth—degree curve has been used for
convenience,

Consider the plot of & curve ¥ = £(x). Iet z' = 3‘);- in order %o

obtain & dlmenaionless coordinate, and let tne ordinates y at
z=0C . 2.3 4 5 be a, b, 0, d, e, £, respectively., It can be
ree.i" wy vexifled that the following eduation represents a fa.ctored.
generul Ififth-degree equetion having the required. values

¥ =8, Dy Gy o« « - &85 2 =0, 1, 2,7 ¢ & @



= - -i-%—da(z -1z - 2)(z - 3)(z ~ 4)(z - 5) + -ggbz(z - 2)(z -~ 3)(z - ¥)}(z - 5)

gt

- doa(z - Dz ~ 3z = Dz - 5) + 2aa(z ~ V(z - 2)(z - 1)z - 5)

- é—"nez(z -1z - 2)(z ~ 3)(z - 5) + i-;vafz(z - )z - 2)(z ~ 3)(z - &) (A55)

The area under the curve in the interval z =0 to z =5 is found simply by 1ntegzation of
this equation; thus,

A =j yadx = )uf ydz = % (0.38a + 1.50b + ¢ + @ + 1.50e + 0.38d) (256)
0 0 . .

By application of eguation (A56) to adjacent sets of five intervals the camplete area under
sny curve may be found. Ushally ten intervals are é.d.equate for most purposes; the area in
torms of the eleven coordinates would then be _

A= .1333% (0.3% + 1.50b + 0 + @ + 1.50e + O.T6f + 1.50g + b + 1 + 1.50 + 0.38k)  (A57)

For most purposes an aresa may be evaluated most conveniently in tabular form. Colwmms 3 and 6
in table 3 are illustrations of such an evaluation.

T "ON NI VOVN

o'
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TABLE 1',— ILLUSTRATIVE EXAMPLES OF. ITERATION PROCESS FOR A BEAM IN BENDING VIBRATION

[ = 100 in.; A =10 fn.; E - 10,000,000 psi; mg = 3000 !-h;'_aﬁ]

— g -

Vo -Bun_mn.{:.ion method .‘ _

Py

h 2 3 k 5 6 7 8 9 10 11 12
dion | T o TR | @ aes | os | x| wr [ mie | p
© Commop faOtOrS ———— i3 -..| 2 A a? A2 23/e a¥/e
10 20 10 1.0 20.00 - ' S o 1739 1.000
. bs5,a1 Lo 25.50 - :
S 22 2 | . .88 | 310.08 15.0 5.0, . .227 e5.27- 138, N1
8 25 15 1. .68. i0.2q ’ 25':; “20.1° | LBos “'M 123.1 .08
. - g C . ot . i L .
7 3 18 .53 y.5% s | 5| 1 23,00 96.60 567
6 38 22 B0 |- 8.8 43.s | 8.2 2,112 20'39 75.60 35
5 ¥ 26 29"  TBh 33 203.86 -| 2.602 |. T 54,71 - 315
- . S 51,17 Ik -43.20
& 56 . 30 .19 5.70 ) 1 ss.07 A75.0 3420 * 15.08 36.51 210
3 86 15 .11 3.85 | %330 | 7 231.8 | 3.515 11'55 21.43 123
. g3.72 |' .
2 7 L .05 2,00 325.6 A.230 9.87 0568
) 95.72 7.33
2 a8 L L] .01 A5 - 21,3 &.790 2.5% .01A6
y . 96.17 ©2.54
o 100 50 o 0 : 517,5 5.175 - 0 o
* myty - WO X 0.1 _ 339 ’
ooy . (3% :Lo,g_g) + 10,08 e e e
S 2,54 m x + 4, .- - - —-
S
Equivelent-lced method . L. -
1 [ 2 3 L 3 7 8. g 10 n L1z
2::; 1,0 | vy (©) Peq - Peq a. ¥ M/I (M/I)gq Slope ¥, (1) '!1(1)
Common factors ———> 32 | a1z 12 322 | a2Ae | adam aaue | e
B 1.00 10,00 %50.1 . i} Q 23978 1.000
. : 60,1 | - . 3668
9 .88 [=10.087| baz1,0 5 - 60 2.73 37 i 21310 853
1.1 32,
B .68 % 10.20 11,6 . 241 9.65 116 3515 17579 .6
302.7 : .
7 . W53 |C 9.5% |, 114.h 4 5k 17.52 | 20 : 15163 568
. Co 7.1 . 1305 -
6 .o 8.80 105.1 961 25,30 303, " U859 .A3x
§ 522,2 : 002
5 .29 7.54 89.9 e1o.1 | 283 32,25:| 388 o617 7857 RN
1 .19 5.70 68.% leogs | ar.ae a8 52k0 .20
. 680.5. . 2163
3 W11 1.85 85,3 | 396 L b2.10 | 9513 7L 123
2 .05 2000 | ° o83 1147.0 3899 s0.60 | 605 - rom 1815 L0565
1 oL %5 6.5 s '5' 5046 57.%0 887 6 36k L0146
0 o g - 3- 6199 " | 61.99 36% : o o

% 5,1 - (T % 10,00) - {6 x 10,08) _10.20

b 17,0 = 10.00 + (10 x 10,08} + 10.20
© 206 - x3000x0m .. .

4513+ - 5180 4 (3% 50.60) + (T x 82.10) + (3 x 37.%2) — 32423
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TABIE 2.— TILLUSTRATIVE EXAMPIE OF ITERATION PROCESS FOR A
’ CANTILEVER IN TORSIONAL VIBRATION
[L = 100 4n.; A = 10 in.; @ = 4,000,000 psi]
- 10A=L -
Station % /! 2 3 2 6 7 & & /O
1 2 3 Y 5 6 T 8 9
- (0) 0 1 1
izgn J I, g4 \C ng!l( ) T /3 ¢l( ) ¢1(M)
Common factors ——e———> A A )\2/(}
2 3 20. 8,905. | 1.000
10 %0 120 1.00 120.0 | g 6.2 | 0.669
9 135 .90 121,85 _ 8.236 .925
145 181.7 1,252
8 163 .80 130.3 . 6.98% .785
235 312,0 | 1.329
7 202 .70 141.3 _ 5.655 .635
380 453.3 1,192
6 259 .60 155,2 4,463 .501
595 608.5 1,023
5 334 .50 167.0 3.%%0 .386
875 T775.5 .886
y x71 B0 188.2 2,554 .286
1255 963.7 .768
3 726 .30 218.0 1.786 .200
1750 1181.7 676
2 1100 .20 220.,0 1.110 .125
2360 1401.7 .594
1 1480 .10 148.0 _ ..516 .058
3000 1549.7 | .516 |7
0. 1850 0 0 oo o

E'60.215(3><

120) + 121.5

8
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TABLE 3,— SATISFACTION OF BOUNDARY CONDITION FOR
THE FIRST SYMMETRICAL MODE OF A FREE-FREE
BEAM BY A SHORT-CUT CALCULATION

1 2 3 b 5 6 T 8
Ste=| m |z |7'(0)|my,"(0) Y:(LS) v, (0)
ractors > oy | =2
10 10 3.8} 1.00} 10.0 3,8]10.806 |1.000

9 13| 19.5 B84k | 10.9 |16.4] .64 | .801

8 16 | 16.0 .68 1 10.9 [l0.9]| .486 | .603

7 20| 20.0 .53 | 10.6 |10.6} .336 | .#16

6 25| 37.5 .40 | 10,0 |15.0] .206 | .256

5 31| 22.6 +29 9.0 6.8 .096 | .119

4 38| 57.0 .19 7.2 |10.8] -.00% |-.005

3 | 47| 7.0 A1 | s.2 | s5.2]-.08% |~.104

2 59| 59.0 .05 3.0 3.0 |- 144 | -,179

1 75 | 112.5 .01 .8 1.2|-.,184% |~,228

o 100} 38,0/ o 0 0o [-.19% [~.240

¥32.9 83.7
&y (0) .y '(0) _y (0) nere y (0) . 21'(®)
1 1 o o sm
- f%%f% = 0.19%
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TABLE %, SATISFACTION OF BOUNDARY CONDITIONS FOR THE FIRST ANTTSYMMETRICAL Q
NODE OF A FRER-FRRE HEAM BY A SHORT-CUT CALOULATTON ' ;
2
1 2 3 X 5 6 T 8 9 10 11 g
S n x »x® z y;'(0) wxy; "(0) E K0)x 1,(0) v, (0) .
(a) on
o — | | | e - :
10 10 1.0 10.00 3.80 1.00 10.00 3.00 -0 .418 1.518 1,000
9 i3 9 10.52 15.80 50 T.01 16,51 - 376 976 689
8 16 .8 10.23 10.23 23 3.0T 3.0T ~.33% S5T4 405
T 20 .T g.80 9.80 - J0 - 1.40. -1.40 - .293 193 136
6 25 b 9.00 13.50 -J8 ~5.70 - 8.%5 ~ 251 -.129 =-.091
5 1! 5 7.75 . 5.9 - .62 - 9.60 ~T.29 ~ .209 -1l ~.290,
4 38 N 8 6,08 9.11 - .70 -10.62 -15.92 - 6T -.533 -
3 b o3 h.23 b 23 —.60 -8.46 -8.46 ~ 125 -5 -.335
2 59 .2 2.36 2,36 —.k2 -k, 06 -h.96 ~ .08 ~.336 -.237
1 75 i 15 1.2 - 22 ~1.6% - R ~ .0be ~-J178 -.J26
0 I00 0 0 0 0 0 0 ] 0 0
v (0) — ¥ H(O)-xl0)e uhare £lO) 'smlr(o) - 28T | g 00ms8
1 L L zeZ | T5BEae o
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TABLE 5.— REMOVAL OF THE FUNDAMENTAL-MODE COMPONENT IN AN ASSUMED SECOND
MODE POR A CANTILEVER IN BENDING VIBRATION

6

vo(0) = 1,00} _a ()5

vhere a.l(o) -

zm(y;)2

5.025

evital) oot

NATIONAL ADVISORY
COMMITTEE FOR AERONAUTIC3

1 2 3 4 5 7 8 9 10 1

ﬁg’; m v n(y,)? b 7,(0) my;v,(0) I 81(0)yy ’?S)) 72{0)

Common fa¢tors > ]ﬁ :‘ %ﬁ‘-
10 1 1,000 1.000 0.380 1.00 1.000 0.380 ~0.51% 1.514 1,000
9 1 8h7 .7T18 1,077 .50 .h23 .63% -.435 .935 617
8 2 .698 OTF ‘.9;74 .06 .084 .084 -.358 .18 276
7 3 545 .891 891 -.32 -.524 —.524 -.280 —.040 -.026
6 y 409 670 1.005 —.54 -, 584 -1.325 -,210 ~,330 -.218
5 5 .287 A2 313 -.60 -.861 -.655 ~ 147 ~.153 -.299
h 6 .18 .194 .291 —.52 —.561 -84 -.092 —.h28 —.282
3 7 .105 077 077 -~ 36 —-.264 -, 264 -.05% ~.306 -.202
2 8 043 .015 .015 -18 -.063 ~-.063 ©—,023 -.157 —. 10k
1 9 .011 .001 .002 —.0h -.004 006 | —.006 —.034 -.022
0 10 0 0 0 0 0 (0 o 0 0
5.025 ~2.580
a

4%
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TABIE 6,— NONUNIFORM CAWITIEVER, FIRST BENDING MODE

1 2 3 3 5 6 7 8 9 10 11 12 13
Sta— 1) 1 )
tion Yl( ll!1( ) Peq Peq 3 M M/1 (M/I)gq | Slope Yl(a) 11(1%1(2) 11(2)

Common fastors—> | /22 | 3/12| 212 | 22/2 | a2/12 | 23/ [ a3/amE | at/1sae
10 | 1.000 |20.00 | 60.8 0 0 26221 5.49 1,000
60.% 3833

9 .853 |10.23 | 122,9 183.3 60.% | 2.7% 37 379 22388 5.49 .853

8 | .706 |10.59 | 126.3 | ems7} oot | w8 18592 5,48 .709

_ I R 309.6 L 3678 L N

' 500 0,19 123.0 B53:3 17.83 2158 1391.% BT 509

6 2434 | 9,565 | 113.8 S6h A 985.9 | 25.95 | 311 2153 11850 5.46 A36

5 | .34 | 8:16 | 97.5 5u3.9 1532.3 | 33.30 | 398 - 8297 5.45 .316

» | .20 | 6.30 | 75.5 | aree | 3885 | e o 5542 5.45 .211

3 | .23 [ vz | si7 (w3 | 77 | 2805.6 | #3.90 583 o 3253 5,45 124

121%,1 1753
2 0566 | 2,26 27.6 1o1.7 k109.7 | 53.%0 639 1114 1500 5.5% 0572
1 016 | .66 8.9 *" | 5351,8 | 60.85 | 728 ' 366 5.4 L0147
1250,6 386
0 0 0 0 66020 | 66,02 386 0 0

Ima = 5.45 (redians/sec)?

NATIONAL ADVISORY
COMMITTEE FOR ABRONAUTICSY
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TABLE 7.~ NONUNIFORM CANTILEVER, FIRST TORSIONAL MODE

1 2 3 5 5 6 7 8 9 10 11 12 13 14
sta—i g (1) | 1 g, (2) v | o/ | g,(2) g ()] 4 (3) (3)
. y
tion [ 71 %1 1 1 g g p’l( ) ¢1(4) ¢1(5) 51(4)/‘,1(5) ¢1(5)
Common factors —_— A A 22/a e /o /e
10 |1.000( 120.0 b0.6 - 8.31% }1.000} 8,068 §1.000 | 7.9%7 J1.000 | 7.919 5050 1.000
- 0. ' .
9 .925 | 12k.9 T7.680 [ 919 7.3951 .916 [ 7.276] .915 | 7.2M8 5050 .915
185.5 | 1.280 N .
8 | .785| 128.0 6.360 | .765|6.123§ .750 | 6.007) .755 |B.979 5050 755
313.5 | 1.333 -
7 .635 | 128.0 M1.5 | 1.163 5.027 | .605| 14,8051 .595 | k.697] .591 |4.671 5060 .590
6 | 501 129.8 571'3 '962 3.86% | 465 |3.688 ) 51 |3.570 | .m0 | 3,589 5060 g
5 | .386 | 129.0 700'3 '800 2,902 | .34%9|2,725 ] .336 |2.65% | .33% |2.638 5060 .333
4 | .286| 13%.8 835'; !666 2.102 | .252 | 2.950 | .82 {1.003] .2%0 |[1.8a 5070 .239
3 L200 | 145.2 930.3 .560 1.836 | .173|21,323] .16% |1.288 ) .162 |1.280 5060 .161
2 | .125 | 137.3 1117-6 '474 876 105 | .802] .0995| .779] .0980 | .77 5060 0976
1| .058] B85.9 B o2 | Lou8| ,366 | .omsk| 355 .oua6 | 353 5050 L0415
1203.% | 402
a |o 0 |0 0 v} 0 0 0 0 - - 0

o° = 5050 (radians/sec)?

——

NATIONAL, ADVISORY
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PABIE B, SKCOND EENDING MODE OF A UNIMORM CANTILEVER

2
[L-loo.'m.; A =10 in.; n-sl"i._.‘:.‘.'..'.;)_J 1_-5nd.n.u3 m-;ﬁpoo.ooopaj]

in,

4 10A=L é !
PN | L 1 1 L 1
0 ™~ 3 & 5 ¢ 1B 9 m
3 2 3 ) 5 6 7 8 -9 10 un 12 13 1k 15
Sta— AR o
tion| H b2 {09 _1_1’1'2@-‘, r “1_('0)71 T%f;’ 12'(0) Poq 8 N ¥, |slope
Common ___ o, e 125xm ™ 1256w A Aou 23 2
rawters M 2 ¥ 3 | T B v
10 {1,000 [1,000 ]|0.380|1.00.] 1.000 [ 0.3800{0.038 |0.962) L.o06 | h.oh3 "4 0 1296
9| .B63 | s |aa0s] 50| M3 | .eMe0| w33 | .aeT| .486.| 5.803 1o.sa nov | 65|
8| 726 | 526 | 526 .06 | .o36 | .0%36| .oe8 03] .033| 460 1:.:30 15.78 | 189.8 noty
7| .59 | .H9 | 39|32 | a8 | 180 023 | —.383| —.356 | 4,207 . 27.08 | 320.8 120
6] M | L2129 378 5k | —2hg ) ~.3™o| .08 |-—-898] 580 {-6.792 40,‘ .27 | MOLS 26
5 1 30 :u.sﬂ 088 f~b0 | ~204 150 L3 |-—623| 636 |-T.M00 _'r;ogi 3467 ﬁq8.51 6
H ] 1 | -
Y| L2 I.ess | or9l-se | ~2208 § ~.1798 009 | -.529| -0 |-6,515 .-13.61. 27.58 | 32h.4 217
3 | a3k 6] wa9{-35 | otz | o] weos |-365 sl e I g T
2 1 0638 ] om1] 008 {38 | o35 Tom5| o2 | —282) .28 |-a.ma. 0.5 ] b7 | 2.3 s
1 .o:.ﬁB.J .00p3 {0 | —oT% | 0007 | ~.0020 | 0D | -.081]-.0%2 | —~.609° T ) eh.62 | 206.0
- [ ) —21.06 ~232
o |o o {0 © 0 0 0 0 0 0 #5.68 | 232.0
2.879/ 19,2202 '

2 72(0) = Y(0) ~ a9 (@hy;  whers 2q(0) - LELE L 00383

879
HATIOMAT.

ADVISORY
COMOITIEE FOR AERORAUTICS

*ON NIy vOVN
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TABLE 8. SECOND BENDING MODE OF A UNIFCRM CANFTIRVER — Continued

2
[L=2004n; A=101n; m=5 l-';ffg)—; =5 .Y E = 10,000,000 pei]

% | | 8 | 19 | = |21 | 2 [ 2 | % | 5 | 2% |27 |8/ | 2 % 3
station | T,(1) yltg(l) eV | w2 )] r | s N M, |Stope |22 \py(2)) 2 e Ry
Comon o 3% | a'w? | 195%m° At | At Ag | Am | 2% (m3 |3 | mb | 2% 225252 | afm

1MNET | 13EET | I3%°ET | 1MAET | 1MNET 12 12 12 1A4ET | 1MNET | 1A5ET {IMAET | M4 14REX

10 275k | 2754 1047 82 o672 §1.000 | 5,026 .03 0 - 2816 | 2816 1070 an

9 1458 | 1288 1887 n 1387 | .519 | 6.252 n.ee 5.03| 66.6 . 1435 | 1239 1859 96

8 227 | 165 165 60 167] 0625 .82 ) 16.31 | 196.5 121 88 88 80

12.10 1117

7 -61% | 481 %81 Ag ~863§ =323 |~3.757 8.9 28.m1 | 337.2 m | S8 | -S89 66

6 -153% | 708 |-1061 38 1572 | -.580 |-6.916 1'“2 3675 | 3%k 6 arrr | -818 | -1228 51

5 1850 | -629 | a8 28 -1878 | -.703 |-8.28% _6'86 38.28 | Mho.g ok 223 | ~722 kg 38

» |-arsT| -Aox | 605 19 | -a776 | -.665 |-T.859 4#'72 31.32 | 368.0 e | Aéh | 696 25

3 —-13% | -183 -183 1 351 | - ~6.011 _20'73 16.60 | 193,2 et 548 | 211 211 -5

2 760 | 8 T 5 765 | -.286 | -3.353 4"18 4,13 | -53.0 e 883 | -56 56 -7

1 23| A -6 1 —233]-.0872)-1,158 |  [-28.31 |-3%0.9 2n| -5 7 -2

25,34 271
0 0 o | 0 0 olo 0 ~53,685 | —2T0.9 0 0 0 0
237 ' -319
o) = 22 a3 0y (®) w219 g1
2.879 2.879
NAXTONAL ADVISORY

COMMITTEE FOR AERONAUTICS
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" ' T

apEm LEATVEL A 4 YTRFTYAATIAS A A WP — e A_®

FULUE UF A UNLI'URE LIANTLLBVAER — LONoJLuaog

2

[L =100 in.; A=101n,; m=5 31 i:’f ; T=5 1Y E . 10,000,000 psi]
. : . ‘ !‘..

p

69T "ON NI VOVN

32 33 34 35 36 37 38 39 Yo 31
Station 32(.2‘) !‘2(1;/”2(2; !’2{2) ‘Ig(ﬁ Igiizg'g{s) !2(3) (7232 z "y
common | ¥ - . | |
factors | jyypy 1HBEY 14k
10 2927 g1 1.000 2059 . 486 1.000 1.0000 | 0,3800 | 1.000
9 1531 A88 .523 1550 h86 .523 .27%0 JA110 As1
8 201 a8 .0686 207 h78 .070 .00k9 .0049 .051
7 531 500 -.318 938 488 —317 1005 | 1005 ( -.187
6 -1726 ko1 -.589 —1The k86 —.589 3870 | 5210 | -.272
5 —2085 k85 —T13 ~2112 zBE L .5090 .3870 —.243
b | 1994 LBo —.681 2022 485 —.684 J6T5 7010 - 15T
3 -1533 875 —.524 1587 k85 —.526 ©.2765 . 2765 —.072
2 -876 70 -.299 ~-891 134! —.301 .0906 .0906 -.019
l 269 Ae7 —.0919 -27h 4Bh ~.0926 .0086 L0129 —,0016
0 0 - - 0 0 - - o | o 0 0
; 2005
r LS 72(2) 466 (radtans/ssc?)
i3 N SORT
) NAUTICS

RATIONAYL, ADVI
} - . COMMITTEE FOR AERO

6¥%



MARLE §,— TEIRD EERDING MODE OF A UNIFOHM CANFILEVER

[L =100 15 %=101n; --sl-b—jfgﬂ—e-; 1-5 1% E 10,000,000 pai]

0g

1 2 3 1 5 6 T B g 10 11 12 13 1% 15 16
sta— | v_(0) (0} | eo2mm (o)
gl 5 11Ir3_ T ,-21'3(0) x "1(0)?1 .2(0)y2 colwmn 7 + v?.) 75(0) Pog | B N | Mg | 3200
Gommaon 125)m A A a2 3 3
| m 1—2%! = L .}
fastors RE 1a4 . | | T | 12| Ter | iWeET
10 1,00 {1,0000 | 0,380 |1,0000 | 0,3800 | -0.078 034 -0.084 [ 1,084 | 2.000| M.123 N 0 Bh .k
. J2 .
9 Jo | .0853 | .125] .0523 | .o78% | —.068 018 - Jas0 | .1e3| 2,082 p 16:35 iz | 515 a3
8 | —u6|-.3ma0 [ —.38%|_.0322 [ -~0322| —o57 | 002 -055 |[—ho5|—.388 | -N.257 1'908 10.29 | 119.2 ua.:
7| —60|-355 | —.355] 902 | .i902| —.0%6 | ~om1 ~057 | —.m3| —.520 | -5,936 -4'029 12,20 | 1%.5 _esla
6 | —¥2|-19%5 |~290| .2475 | .m0 | -.036 | ~.000 —056 |-.368|-3%8 | -3.551 _?' 8.17 | 9%l _120'9
979 .
S0 (] 0 0 0 ~.027 | —.00x —a%). |o.051| .od9| .55 ,19 2.8
-7.415 —23.7
S 0| .a920 138 | —.2735 | —.hi00 | -,018 | —-023 -, 08 Lkt | k22| ABTL P, -T.23 | ~81.9 X8
3| .60| .0Bip | .82 |-3160 | ~3160 | —.011 | —.018 —o%s | .25 mel s5.:8 ," 5,77 {110.3 65'
. .5
2 A8 L0306 L0231 | — 1885 | <135 ] 005 | —.0)0 -.018 M5 | k| 5,480 gg —5.%0 | ~59.3 127.8
1| .as| .o023 | .003|-01% | ~0195| —oor | —.003 | —oo¥ | .| .138| 1.8 11-706 s | 553 72'
. .5
o 1o o 9 [0 [ 0 . 0 o o .|o 1616 | 7.5 |
0,226 0.097%
a 0 (] 0 (] *
y.(0) _,_-3( )_.1( )-11"'02( )72 .l
vhere ll(o) - "O_' = -0,0788 N
et ay(0) 299T% g 0338 MATIONAL ADVISORE .
2.885 COMMITTEE FOR AEHOXADYION

2887 'ON NI VOVN




TABLE G,— THIRD BENDING MODE OF A UNTMORM CANTILEVER — Contimmed

2
[L-looin., A =10 in.; n-5l‘;_(.'£?_a 1-501n."; :.10,000,000;31]

¢34l "ON NI YOVN

ml
17 18 19 20 21 22 23 o4 25 26 | o1 | 28 29 30 3N 30
1) 1

Station 13(1) .’1!3( r -’2!3( ) 2 a.'ltl),l “3(1)12 O:ii::?gh-l- -,3(1) ,-3(-1) Peq 8 N Ny Slope
Common _y ma* | a%? [129502 | a%? | 1255 | it m* ot ot Ay | 2a 123, |23 |2k
Taotors ™ jyngy |aMkRY | 1842ET | 1MMET | 1MA2ET | aMeEr | LhEET 14MET 134T 12 12 12 14kET | 1hkET
20 86,6 | 586.6 | 223.0 | 586.6 | 203.0 67 -2 265 322 1,000 | k.372 . ] \eo
- <3
9 jo2.2| 2605 | 376.0 | 1%8,0 | 237.0 230 -1 229 T3 | .226| 2.872 7,203 k.37]  55.3 7.0
8 69.3| 50.3 50,3 38 88 | 104 o 1% a5 |-, —4,08% 2‘959 11.61| 135.0 232'0
7 |-aem| 262 | 262 | wai| wa| 158 1 159 —203 | —63 | -7.129 4‘170 1,57 167.7 &'3
6 |.a1.6] 8. | 2.2 | 108| 5.6 | 123 1 124 142 | -1 |-5.006]. 10.% | 119.8 )
—9.176 ~55.5
5 3.0} 35.2 26,7 | —<r3.8 | -56.0 g1 1 g2 11 ] .o3%| .k _8.765 1.22| 15.1 70.6
¥ |ozrb| see | 784 | as5.2 | @328 61 1 62 165 | .512| 5.87% -el891 7.5 -84.6 14'0
3 268.8| 36.7 | 36.7 | am.7 | am.y 6 1 7 232 | 720 | 8B.277 5'385 -10.43} -116,9 130‘9
2 {200.3] 12.8 1 128 | -60.2 | -60.2 17 1 18 182 | .565| 6.58% 11-970 5.0%| 53.9 184.8
1 72,5 1.2 1.8 | -6.7| <00 A 0 3 69 | .214] 2,705 1“'675 6.93) B85.9 93.9
0 0 0 0 0 0 0 0 o |o ’ m.60{ 98.9|

769.3 -£.2

a, (1) « 182:3 . o567 (1) £z . o,

: . %2, 2,885 5

NATIONAL | ADYTSOHY
COMMTTIER WeRt AXRONATYIOHN
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TABLE 9.— THIRD BENDING MODE OF A UNIFGHM CANTILEVER — Concluded

{L =100 in.; A=101n; m=53 1:’“ LA 50 1n.*; £ = 10,000,000 psi]
33 34 35 35 3 38 3 ko n A2 b3 u 45 s b 48
(2) 2 2
Statlon ¥, ,113(2) T 1213(2) I .1(2)y1 52(2)y2 c:tg::n ,3( ) ,3(1)/,3(2) y3( ) 13(3) y3(3) ,3(2)/,3(3) ya(3)
] b2 b2 2 ! ] 3 A ! 1
Comnon A | At | 1o | A Iu® | w) w0 oy A'm Ve |-
factors 2 Javey | hhEr 11&13\3_1 12Ky 14&%1’ INED | 18KET 1M (14T 1ANET | 1hAET
10 1388.1 | 1388 527 | 1388 527 1027 -2 1025 363 3960 1.000 | -295.6 | 377 3820 1.000
9 9%65.8 ] B3k 1251 505 ST 885 -1 82y B2 3970 226 { 493,7 3780 .228
8 508.8 | A35 35 a2 k2 THS 0 ™ ~1%6 3830 —M2( 636.% | 1m0 3860 -.398
T 366.8 | 217 a7 | -6 116 606 1 607 —2k0 3780 —.661| 6481 | 219 3820 ~.661
6 302.5 | 139 208 | 78 -267 A3 1 i) -7 3720 ~} x86.5 | -aso 770 578
5 358.0 | 12z 93 | ~256 -194 EL) 2 351 7 —_— 019| —217.9 8| ~-- 081
x ¥28.6 ‘08,6 8 | 93 Ao 236 2 238 192 3860 526 86,7 2199 3810 528
3 A6 56 55 | -218 218 LY 1 L] 27 3780 TS5 195.% | 2B 3830 753
2 283,7| 18 18 -85 -B5 66 1 67 a7 3760 .598| 185.6) 228 3780 .605
1 9.9 1.7 2 -9 13 17 ] 17 B2 3760 2261 TAM 8 3830 255
0 a 0 Q 0 0 0 0 0 0 —~—— 10 0 o] —-- 0
=55 -

2.87

: ll(z) - —i‘ﬂg- = 1027

032 » 3820 (redisns/sec)®

RATTONAL. ADVISORY

COMMITTEE FOR AERONAUTICS

34

"'ON NI VOVN

g6S1




TPABLE 10, FIRE¥ SYNNEYRICAL BENDING MOTE OF A FREE-FRIE BEAN CARHIING COBORNYRATED NASSES

[L-lﬂﬂin.] A =10 in,) I-5:I.n.‘, ;-m,nno,mpqt]

}-‘———")DA'L7£——~‘
e ([ 2 3 A 7 6 9 p
e L

— s — — el L e L—l—
1 Sy =00 po-secin,
1 2|3 x 5 6 7 8 9 10 1 12 13 1 18 15 17
— 0)
s= |y lal 2 | yr@ ] Y%i) w® o, | e 8 1 M | g | mope | x|y %
1250 125w LY kY 2 A2l a8 [ a3l oAt | mt m%
Ocmmon DRSOt Y “1yy = 1hk 12 12 12 12 | abmr | WNEX | e | ke | o
10 5”' 1 0.3 100 0.38 0,766, | 1.000 5,58 5.58 0 11509 78669, 78669 |° 29900
o |52 1 .64 1,26 606 .81 9.49 15'07 5.6 O 67290 | 620 | 100900
8 sl 100 .68 .58 RTY 582 T.00 22' “20.7 = | e 55087 [ 55087 | smoby
T ] 5| 1] 100 .53 .53 .296 .385° 4,66 m'g LR sy - Whg3g | Bag3g | Ahg39
6 | 5| 1] 1m0 50 .60 \166 21 2.63 ) 89.4 835 w8 | 3wl | sismo
5 [ 5] 1 5 29 o2 086 n‘r; B9 2.8 98,8 | 1186 ~ %5 | am3 | wms | e
' . . o . . » 1100 L 7781 48713 10TG0
0,25 8509
1 5 11 1.5 .19 28 | _om ) 05T —66. 2959 129.0 1548 6o 1520k 16204 24300
3 | sfal 1.0 a1 n | -aes| - 2.0 | gm0 8'1_,_ w6 | 3B 20 D2y 92%3 9243
2 | 5}1] 100 .05 05 | 188 | kg Y 868 | 1958 N1h3 Kk N1h3
¥ 5,31 02
1 5| 1} 1.5 01 o | —2en | oo | .358 1.83 172,1 2051 on wh |- 108 1561
o {slal 8| o 0 o | -6 | -2.83 e | P a °
11.52 | x13 ' ! 341,303
sy 0yl g0 . S TR
1 "1 [} Feqg = %% 100 x {~0,1625) = -15.50
C‘—QE ' 9 (300 x 0.22)
L +* . )
vhers T, (0) , N 1MM - X6.08 | 5,003 '
@-g ui52\ + 1n0 200 . . s SPAMLY s T T e
l\ 184 j o il AALLURAL A1F¥L NI

H . N i
i.-l- N . oL L h' - "Il '_-‘.E ” walh ‘| cAo o i i Mo L ' St

: \
[ ' I
., '

[

624617 'ON N.L VOVN
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TABLE 10,~ FIRST

SYMMETRICAL BERDING MODE OF A FREE-FREE BEAM CARRYING CONCENTRATED MASSES - Concluded

[L =100 in,; A=10in.; I =5 111-4; E = 10,000,000 psi]

18 19 20 21 22 23 24 25 26 271 28 29 30 31 32 33
1
statton | 1) |7 (A W wr W 2 b op | s | m | Mg [stope |yt @) | gt@]  x 7 (3 1y, (1) A (2) | 1, (2)
Common_, __A* Al A A a2 a3 ] a3 | A% | m* |1255m |_at
factors”™ jygpy 12 12 12 12 | 1387 | 18481 | 14RT | 1M4ET | 13421 | 1B4EI
10 59240 12,1 1.000 5.61 5.61 0 11856 82148 | 82148 31200 61833 11.63 1,000
9 | wr8eo| 11.9 808 | 9.70 15'31 5.6 7 | 0|02 | moese | 05300 nog77’| 11.63 . | .808
8 | 36560 115 616 | 7.40 22'71 20.9| 258 | |50513 | 59513 | 58513 | 36198 1162 617
T 25510 10.9 431 5.18 27.89 43.,6) 529 10992 k6992 | 46992 6992 2667T 11.61 A3
L] 0
6 14980 20.4 .253 | 3.05 0.8 71.5| 861 lo131 '36000 | 36000 | 54000 | 15685 | 11.60 .254
30,
5 5280 10.0 0802 | 1.09 » 102,5 | 1231 8000 25869 | 25869 19670 5554 11.58 .090
' 32.03 90
b [ 3230 12.7 —.0545 | .62 1A 134,5 1613 7287 16969 | 16969 | 25450 | 3346 | 11.72 —.054
) 3 . - .
3 | -lo1g0 [ 115 ~.2720 | -2,03 (~20.65 8.73 165.9 | 1335 ¥ 9682 ( 9682 [ 9682 |-10633 | 11.63 —.172
’ . 53
2 | -15290 11.3 -.258 | -3.06 17%.6 | 2092 h3ko §3k0 380 | 15975 | 11.62 —.258
) ) 5.67 3250
1 | -18390 11.5 -.310 |-3.68 1.99 180.3 | 2160 2090 1090 1090 1630 | -19225 11.62 -.311
o | o3| 1.3 -.328 |-1,95 77 1182,3 | 1090 0 0 o |-20315 | 11.62 -.328
356,777
125M\m
X 3481303 + 100 x 9234
T(1) . M . 3886000 g x30
200 200 2
®° % 11.62 (radians/ses)?
12
X 356777 + 100 x 9682
v, () . i R R

200

NATIONAL ADVISORY

COMMITTEE FOR ABROMAUTICS
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NACA. TN No. 1522 ‘ _ - ©b

TABLE 1]1.— FIRST SYMMETRICAL BENDING MODE OF A FREE-FREE BEAM
CARRYING MASSES MOUNTED THROUGH SPRINGS

[Le1061a.; A=101n; I=5in% E 10,000,000 psif _ - e
I-.——IDA-L 74

_@ 2 [ -] 10 ) :
“F~—oa = 5000 /b/in =t
s 100 [b-sect/in.

Ty

1 {23 » 5 6 7 8 g - 10 11 12 13 1% 15
2;‘:; Iim = Y1'(0) £ Y:(L(';) 'ﬂl(o) Pag P M Mgq | Slope 1'1'(1)
&
%:::g;*,e }?.S_&:' " %? :_2 % %2’ % 1;::: 112:1 1&‘21
10 [5]1] 0.38 | 1.000 0.380 | 0.769| 1.000] 5.62 5.62 o P 82982
¢ |slifas0 .855 | 1,282 | .62k 811 9.73 15.35 5.6| 11 11867 71008
8 |5)1] 1.00 712 2 k81 .625 | T.50 22.85 21.0} 259 1638 59111
7 I5]1f 1.00 5T STA] W3%0 A2 5,31 28.16 3.8 531 1107 ATAT3
6§ js5i1] 1.5 .438 .656 | .207 269 ] 3.2% 31.%0 72,0 | 867 10230 36366
5 {511} .76 .315 .239 | .08% 109 | 2.33 s2.73 103.% | 1232 8998 26126
¥ Is5|1]1.50 .206 .309 | —025| —032| - 136.1 | 1633 17128 :
3 [5]1|2.00} .11 118 | —113 | —.a87 | -2.73 | P—a.65 .31 168.5 13;3 7365 9763 B
2 |5{2f2.00 | .053 .053 | 278 | —.232 [ 2.75 ::2 176.5 | 2115 ::: 4373 '
1 (5|1 150 .013 019 | —,218] -.283)-3.36 1.88 181.7 | 2177 2068 1098
oI5/ .38 }o 0 —231 | —.300 |-1.78 183.6 | 1098 0
h1.s2 ¥.339 3
. 3

a !1(0) - '!1'(0) _!‘o(o)

2, 0) 4 (mqry ' (0))staticn 3 (—-5-’!12 x n.339) + (1°° %0 ns

a,
YT =
1 (2 1 - ) H
vhere 7,(0) = GF . % /lmDoen
tma+ 23 (E-'?—“- xu.52)+ 200 ;
= 14k 1 3L
1 _(p)"‘ 50
wna 3% = & o B . 5o(zeatans/sec)? and of = 11 (asmumed) . .
16 17 18 19 20 :
1 0 1
Station () |z (04 W)y ()
Cammn 1255w | _ak .
factors” 115t | Toaes 125w , 360agy 4+ 2002 9763 - ;
134 0.78 2382000
v (1) o b = 13200
0 31560 | 63780 11,28 1,000 ° 228.2 228.2 . -
9 106600 | 51810 11.28 L1
8 59111 | 39910 11.28 .625 a? ¥ 11.2T7 (radians/sec)?
7 %7473 | 28270 11,28 BT
6 54500 17170 11,28 269 For l-inch beam tip deflection, —
5 19630 6926 11.32 .1083
. nge? (7, (W)seatian 3
» 25700 | —2072 11.12 —.032% Maxiwom epring force =
2 -
3 9763 | 5437 .22 —.2478 1= (%
2 373 | 13830 11.25 -,232
1 16%7 | -18100 11.26 —.28% . 100 x 11.28 x 0.1478 . ;g 1n
o o |e15200 13.25 -.301 1 1,28 N
360,397 50
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mm.—msrmmmmmmwam—mmcmcummmm

[L-looin.; Ael0m; IT=5inY 7 -10,000,000 pai]

: v

my = 100 b= sec i,

1 2] 3 1 5 § 7 8 9 10 1 12 13 14 " 18 15 17
Statlon I|n * | z xl'(OJ 171!1'(0) ] x(0)¢ Y:(L(';) u:l(o) Pog Feq 3 .| Ny
a
favtars - | 1 |12 | 2P v | LS S a | 2 | A
1k 1h% 12 12 12 12 12T
10 5| 1} 10 |00 0,38 1.00 1.000 0.380 | —.d21 [ 1.%21 | 1,000 5.35 0
9 | s|1| | B1| 122 6o 5% B0 | —3re.| am | 6% | 8.3 12::: 5.36 73
8 5 [ 1 R I B4 1 .64 24 .1g2 JA92 | ~337 STT %06 4,89 18,55 | 1202 233
T 571 o7 A9 A5 ~-15 - 070 070 | —.295 195, .137 1.88 20.23 37.57 ise
3 3|1 £ 36 7 5 -.38 -.228 -.3%2 7| 253 | -a27 —08B9 | -1.05 19.18 57.80 693
5 5|1 5 .25 19 -.62 -, 310 —.?36 -210 | -0 ~288 | 3,34 15,84 76.98 5Q0
b 5 (1 R ! .16 2% - T -.280 ~h40 | -159 | —53 =ark | A36 11,38 92,82 ' | 1iag
"3 511 .3 .09 .09 ~& | -a180 ~280 | —26 | by | 333 | m.9% | Posoogo PVRELLE ggg
2 F11 2 K| Ok -.le. -.08% —08% | —084 ‘| - 3% w235 | -2.82 _35.28 71.84 859
1 511 . .1 .01 01 - -.022 —033 | —.082 | —178 —125 | -1.%0 36.77 36,56 A39
o 5]xfe ° o o 0 0 o o 0 -2
3.8 e
a Y1(0) - !1' (0) _ glo),
(123 ;:.017\ « (180 x 0 x .0 60\
vnare X(0) . o /*\ X 0%) 27832 . 500k
24 T
(S = 3.84) + [ 100 x (30)2]

L LI

MATIONAL ADVISORY
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NACA TN No. 1522

57

TABLE 12,— FIRST ANTISYMMETRICAL BERDING MODE OF A FREE-FREE BEAM CARRYING CONCENTRATRD MASSES — Consluded

[L =100 in.; A=104in.; I=51n% E = 10,000,000 pu]

18 i9 20 21 22 23 2k 25 26 27 28 29 30 31 32
station | Slope | ¥y"(Vlary' ()| ¢ [x(x|yy (D) Jar () 2 [ 2, | 8 M Heq | 8lope |xy'(2)
Comson o _ 23 At L 1253% N 2 | a A 22 33 a3 a¥
factors
15KET | 1MRET 1k% 1MEEY 12 12 12 12 14KBI | 1KET | 1RAEI
10 10260 | 10260 3895 { =880 | 131%0 | 1.000 5.k2 o 10643
3480 i : 5.%2 3630
9 6780 6100 9150 | —@5%0 | 9370 713 8.56 5,82 T* 7013
3%07 13.98 3556
8 3373 2700 2700 | 2300 | 5670 A3 5.19 19.h0 | 238 3357
ATk 19.17 3318
T 199 139 139 | 2020 | 2220 169 | 2.06 38,57 | %65 139
6 ares -2523 | 2515 2270 | ~1730 | =793 080 67 223 59.80 | 717 2853 -a7i%
. 2029 - - - 20.56 . 2136
5 - 4552 | -2275 730 | —13¥%0 | 3120 | —.236 | 2.76 80.36 | 962 X850
, 1109 7.8 uaT7s
X o -5661 | -2265 —3395 | <1150 | 4510 | ~.3%3 | -».03 13.77 8,16 | 117k o -502%
: 61 | —2700 1700 | 860 | 4800 | —.365 | k.29 {~43,80 11, 6024
3 e 70 70 365 | 29 |-b3go) 7 |93 | 532 tem
2 —i4g3 ~9500 —900 | -570 | —3920 | —, -3.51 77.61 | 928 3793
1 —eosT 2466 —2hT 370 | -2 -2170 165 | 1.95 —57.83 39.78 | 75 —2159 —263%
—2k65 —! % w ’ -39.78 ‘ -263%
o 0 0 o 0 oo o o 0
5510
5510 123AL 4 100 x 30 x (-5661) ) - 3
x(1) . b . 18200000 _ o5 X =+
¥23000 %23000 _ ~3
33 3% 35 36 37 38 39
Station | mxv,'(2) T x(2)x | ¥ (2) | v, (1) A, (2) | v (2) .
Iy
Gommon 5, g, 122 L
factars 1%k 1RAET B
10 10633 Aoks | —3180 | 13820 52,1 1.000
9 6310 gks0 | —2860 9870 51.9 JT1H
8 2765 2765 | —25%0 6000 51.7 X3k
T 97 97 | —2220 2360 51.5 171
6 ~1629 2843 | 1910 ~8ok - —-,058
5 2425 —-18%3 | 1590 | —3260 52,1 -.236 -, - -
X —2k10 ~3615 | 1270 | -A750 52.0 —. 3%k B
3. -1807 -1807 -950 | -5070 51.9 —.367
, 2 —959 959 | -6k | H1s0 51.7 -
1 —263 -39% | -320 | 2310 51.% -.16T
0 0 0 0 o -- [}
5306
‘5306 123AL o+ 100 x 30 x (-6o2k) . .
1kk _ .
x(2) - ] - 13470000 - .
123000 23000 R

le s 51.8 (:-ndin.::u/aecz)2
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FABLE )3.— BEAM MOUNTED ON 3YRING, FIE3T BENDING MODE

[L-J.oom.; A=10dn; I-5in¥ m=z2fz0)? a_-m,nnn%; .D--L-moél’-(.“_i:‘:ﬁ; x-lo.onc.ooo::u]
e -
' AxL / ;
£05 L;Z-J/45/6 7 &8 9 m
T PR T S B I S R )
2 ma
Za
1 2| 3 » 5 6’ T 8 9 10 1 12 13 1 15 16 T
P — InY . -
o) W ) . (1) (1) 2
station b4 n T T £ %‘) Wy Pa ] ] Moy Slops T. z T, o'
ommon ., 12D 1%am LY A 53 a3 A8 | | 1250w 154
tors 14k 14 e 12 12 1hET 14T 1net 13%%eT kY
10 5 1 0.3 1,00 0.38 1.024 1,000 5.68 .68 0 15322 111119 42200 1145000 6.31
9 5| 1| 1.m B | 1.5 ,B6K sz | om ’ 5.7 78 1¥ 98700
9 7 . 5,79 1503 95797 3700
B 5 1 1,00 .68 .63 .TO4 686 8.2k 203 7.5 266 1 80553 8oss0 83500 5.92
7 s 2] 1.00 .53 53 54 540 .50 30'53 5.5 552 26 6515 | 6l 68500
6 5| 1] 1.3 o S0 Az 5T vos | UT | t6e | a7 e | 5149 | TEE0O 4000 | 5.52
3 s| 2| .8 a3 | e x| x6 7.68 ;':. ms | a3k ;: sor | aseo0 | moweo
X s | 1| 1% .19 28 2 209 2.53 u'ﬁ 150.7 | 1802 o355 BT 38200 370 | 5.3
3 51 1| 1.0 A1 M A3k 1 1.59 : 1024 | 2310 - 15118 1m120 18020
3,32 = Boag o
2 L] 1 1.00 05 .05 OTh 072 .08 g0 M. 2829 5216 7073 070 9970 .20
1 x| 1] 1m o1 .02 034 0 R73N B . 760
: i ® ) - oA 33 ¢ wee | 799 | 3 - 1857 2780
2 3 i ) [v} g2 SO JOR3 At 8.5 1857 o [+] 2900 5.71
1n.52 T 1. . 500500
{0} ’ ol S b ) ) ’
= Im L3 )
7,0 @y (0) wmere y o) DT X - 350 - g o0
Earsd- Ea _10000+(3ﬂxu.52)+1m s .
m, 5.9 14k
and =¥ 14 agsumed to be 5.9 based on the relations
* Y
’

2 (ﬂlﬂt-)-%}ﬂ-&ﬂ} pz-i.%-m
n.
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TABLE 13,— BEAM MOURTED ON SPRING, FIRST BENDING MODE — Oonoluded

, . % 2 e
[L-ltmin., A=104n,; I=5in% n-1ll':('—fg)—, u-m,ooo%_; n,,a-m.-:mo@-‘f)—, s-m,ooo,ooopu]

18 19 20 | 21 | 22| 23| o4 | o8 26 | o | =8| 2 o | 2| 3

gaST "CN NI VOVN

statton | ory(1) | Byg | 8 1 M | My | Slope |Mm'(®) | x4 | o2 |3 |13 | e? | 5y
fastors ——> % - i% 71% 1#:21 u::x 14:;1 ii%;:: H::I . ﬁ:%i
10 1.000 5.73 5.73 0 16205 117900 | M4800 | 121000 | 5,95 | 1.000 | 121200 | 5.9% | 1.000 °
9 .866 | 10.39 wa| 7T 16130 | 20X 152500 | 104800 865 | 105000 | 5.93 | .B66
8 .T32 8.79 o 21.8 | 270 15850 85600 | 85600 | 88700 | 5.9% | 733 88800 | 5.95 | .T32
7 601 7.22 513 k6.7 | 567 15293 6o7ho’ | 697RC | T2800 601 73000 | 5.93 | .602
5 JA7h 5.70 o7.63 7.8 | o Jhgh2 5150 | 81900 | 57600 | 5.94 | W76 57600 | 5.9% | .¥15
5 .355 b2 x2.10 116.6 | 140k 12038 dollo | 30500 | R3200 _ 357 43300 | 5.9% | .357
4 248 | 2.99 %5.09 158.7 | 1907 . 27270 | MoT00 | 30280 | 5.90 | 250 30300 | 5.9% | .250
3 .158 1.92 ¥7.00 203.8 | o847 - 16140 | 161%0 | 19250 159 19290 | 5.9% | .159
2 .088 1.08 ia.og 250.8 | 3011 5573 559 7560 | 10670 | 5,95 .088 10690 | 5.93 | .0881L
1 .ok2 .53 298.9 | 3587 1986 2980 5096 042 5110 | 5.93 | .0h21
48,62 1986
0 .025 A7 3%87.5 | 1986 0 0 3110 | 5.83 | .oe57 31220 | 5.9% | .0257
] i - ' 532120
125Am )
e e
—E+_1%x 11,52 + 100
25 5.9 . NATTOMAL ADVISORY

CONMITTEE FOR AERONAUTICS




2
[L-:.oom.; A=101n; I=51nk n-lE{-:;.;-L; a = 10,000 22 .

TAELE )%.— BEAN MOUNTED ON A 2PRING, SECOND EENDING NUIE

fo—

0 1

in.

my = L = 100

{oee)? ;
in

0=l ﬁq

z 3 4 5 & 7, 879 0

E = 10,000,000 pli]

2 m
2
rorrd
1 2 3 4 5 6 7 8 9 10 1 12 13 1 15 16
Sta— 0
tion | T1 7? P AN RS A0 £ .q('i) n EACH AL i 8 N Meq | Blope | Tp'(1)
C ommon - 125km n 1250w 2 L3 f_ ad a3 ?.*' X
Tactors ™ 1 Tk 12 12 12 IMET | 18T | 18T
10 | 2.000 1,000 | 0,380 1,00 | 1,000 0.380 | 0,185 1.185 | 1.000 5.12 5.2 0 3379 17393
9 .86 | . |1aes]| .52 M50 b5 | —160 | 880 | sth | 6% 12'06 5.1 68 1h01%
8| .32 536 | .536 0 | o713 o713 | ~a135 235 | 198 | 2.3 14.19 17.2 | 209 e | 20703
T 602 362 | 362 | —.28 | -,157 =57 | =111 | -.189 | -.126 | -1.k% 13‘05 n.T | :2 7601
6| .45 226 | 339 | -.5% | —.256 ~.388 | 088 | —me | —,382 | A3 8'52 7 | 532 m 3 5878
5 357 A7 | W96 | .76 | -.271 -.206 | —-,086 |-, ~.585 | -6.9% 1.53 53.2 | 631, 15: 2687
4| .2%0 063 | .oo% | —,B8 [ -,2p0 ~.3% | —.086 | —.B3k -.70'1 -B.39 _6'81 54,8 | 649 | 1lar
. 11
3] .59 025 | 025 [ —.o% | ~,1¥9 -89 | —.029 | -0 | -.769 | —9.29 1600 Mo | 567 9“ 216
2] 0881 | ,008| .008{ —.,96 |~.08k —,08% | —.016 | —.9M |- 795 | -9.55 _25' 320 | 3Tk 3 128
1] .ova | .000 [ 03| -.98 [-.0m —.061 | —.008 |-, —820 | g8 {7} g5| e Pl e
o L0257 | o o ~1.00 | -,026 -.010 | —.005 | —.905 | .88 | -5,00 =35.39 28,9 | -o8 =8 0
2,968 -0.253
¥500) + wy(¥al0) statton 0 opr (-0.253) - 2.57 -
a..l(o) _ B=ys ay1Yo o _1hh .-*_2_;155&._0_135

zu(r1)? + mo(1y)? statton o

% (2.968) + 0,066
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TAELE 14, EFAM WOUNTED OX A SYRING, SECOND BENDIWG ROTR — Omtinued

2
[L-looin.: A=5in.3 1-5111-.. l-lgj;—.%)—'; u-m,m—ﬁ-; -cuun-loolb{.:ﬂﬁ; n-m,ooo,ooop.s,:l

7 18 .19 20 1 R 23 2k -1 -] 7 20 29 N n 3
Bration r I?S) PR eH x gy | | ol | org 8 " Ny | S0me [ 1,02 £ 1,(2)
0 5 Rt S | _at * A A 2 2 3 | et |

crmon 1@% A | A 1250n A A .l A
Taokore ™" yuy wer | e W | avaer | e 12 12 = x| e | aeex maﬁ T
10 6610 053 29153 3480 260 8893 1,000 5,24 "ok 4 31‘2!. 193%0 ‘rase 9960
9 21000 sTTh 5000 500 226 5548 624 .50 u'ﬂ 5.2 ™ 555 15625 23450 6235
8 10703 253 1803 1803 93 2272 255 3,09 1563 17.9 28 P37 1970 1970 onin
7 601 639 | -am 384 157 796 | 089 -1.03 n.m BT A3 “so3h 833 8533 a8t
6 7310 3352 | —508 <395 .| 1% | w86 | —3m -%.65 m'u 8.5 517 ersy 5499 sgso | -aem
5 005 | 5253 -1980 -1808 Ls] ~BENS -635 .55 o060 5.7 697 760 k2 310 65348
3 1650 -3 ~A778 564 65 -nrs —807 - 5,61 .00 61.3 T 203 1082 L] =B108
3 24 -Bogs | -azrs 2078 n 8065 | 907 20,82 -rr. . 54,3 6 " 248 240 —51g
2 -84 ~8358 37 737 23 8351 [ —gAk ~1,29 912 3%.5 M7 - 145 N5 553
1 -7 8338 -5 526 n B39 | o3 .96 _h' % 1.0 i o an 266 —gs01
0 o | v | -e11.8 50 7 o] v | e 5.59 ) 550 | - o g | -%%
58900 A6 63732
1850,
LR CH T S ¢S R CUNE .S N (B poea) Jmoo o
10000
—$+n+no -—.E.-g+¥%xu.52 + 100
And assmption for m.f in foomd From the relation
#2® f3 5 (smeion 0) + &g 25 Foa (Fmtion 0] + 022 mye(®) (stavtan 0) = aye(0) (statson 0)
L. 19000 (-0 Bho) . SR00R0 | o
-~ x 3,39 A x5,00-200x 080 k.3
12 12
ayft) - SER m6) - e o
2682
af e 0000 (00a) 00 )
“ 220,38 - L x 5,59 ~ 30 x 0,928
i€ A
12Bx o 53730 :
v (1) L2 T mmoog | o |
20000, 500 59 .
70.9 ! FATIONAL

2367 "ON NI VOVN
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TABLE 1%,— BEAM MOUNTED ON A

SFRING, SECOND EENDING MODE — Conclnded

4]

[L-lOOi.n.; A=10in; I=5in" n-1EL’EZ-E; a = 10,000 12 mo--L-looM; E:-10.00°,°°°D°1]
in, in in.

33 34 35 36 37 38 39 L n ko
Station !112(2') E al(z)yl ,’2(2) tb22 ny, 12(3) m22 ¥a
Common Al 12650 Al A A}
fastors 7 Jyppr 14% 1B4ET 134ET 1MRY

10 9960 3785. -13 99713 72.1 1,000 10125 T1.0 1,000

9 shop 8100 -1 6286 72.0 625 6348 70,9 .626
8 1890 1890 -9 2589 | M. .259 2640 70.6 .260

T 516 ~516 -8 -849 5.5 - -89 72.1 ~.08%

6 -1849 2770 -6 —3885 72.8 - —3931 71.3 -

5 —2265 1722 -5 —6343 7.1 -.635 6423 71.2 -.63%
4 025 —3080 -3 -8105_ TL.T -.812 -8212 TL.1 -.810
3 -1352 1452 -2 -91%0 TS5 | -.915 ~g268 .1 -.915
1 -400 -600 0 ~9501 71.2 -.951 ~9550 71.0 -.951
0 -241.3 -92 0 ~9390 71.2 - ~9540 T1.0 —.941
2743

1
—?%! X 2743 — 24130

31(2) - A = —12.8

o5 82

@2 » 71,1 NATIORAL ADVISORY
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{(n) Susmation method. {b) Rquiwalant-load msthed, ‘

’ [0}
Figurs 1.~ Oraphioal 1llustratlon of the summetion and eoquivalent-load mathods proaented in table 1. o

™ . . ] 3
2
e o o - B
o
2 T \ 2 !im / é
g
{0) *
B9
N
sy / P e C l l l I l l J
é§; [ o ‘I_-‘—L—'!
5a.nd6 ﬂ{o) \'}’ ‘QV{;§2 ] —|_|_‘—
NZN
7 S \/\ NN 7 X \
NN NN
8 |
! Yo |
% 7 9uﬂ"\|]lllll.;
10 Slope , \Z/& ,/:Q;’é 10 8lope ,_I—'—J——‘_’—‘_'-
W NZNCNTZNZ _—
n !1(.1) 1 1,.{1)
) — 1 e L 1 1 ) -1 . 1 L 1
0 2 L 6 8 10 WATIONAL ADVISONY 0 2 4 6 8 10
Station OOMMITTES FOR AZRONAUTION statlon -



I  Loading {bending or P~ apag = M[38tD)_ ,[3atd)
] torsional) or M/EI P 2\ 4 ) "\ B/
A S—-area = Xb
b —— )
il T id
i ] k 1l 1 I k 1

1 Summation —p
Shear, slope
Al=— * b)\ /(r or torque F :

SR
SES

NATIONAL ADVIBORY i ] k 1

COMMITTEE FOR AERONAUTICS
Figure 2,- Two successive numerical integrations of a curve by the summation method.

[ Y
[ 3%
1.3
[
[l A
[
R

Moment,
deflection
or rotation

¥0
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NACA TN No. 1522 - 65

Rp
Rgp = %t (Ta+bb=c) Rpg = %t {(32+10b=-c)
= A [Ja+bb-c = A (_
2 (LT"') (a) Rpc 3 (-a+10b+3c)
=X
N Rp iz (af10b+c) (b)
Ric = 3 (Ta+6c-Db)
= A . _
Ryo = o (7d+6eff) . e p—" ?
I’l- - ¢ : __"T';:'u vd ;..4 . "-1_15 . ____:'
R, = A (-b+6c+l).|.d+6e-f) L * 4 &3 f_.—.—'_- :__.E'.
= f% (-§+5c+7d+3e-§) (c)

Iy (Concentrated mass at station b)

Y
4]

8 o NATIONAL ADVISORY
. COMMITTEE FOR AERONAUTICS
'- A (12 ) | :
—_— —— il 11§
fmp, T 17 (X (d)

Flgure 3:- Formulas for equivalent concentrated loads. -
Equations (a) and (b) from reference 5.)
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Column of

table 2
2 7 \
T T

N
Y
6 TZ§?§%§@N@h
] N
R SZSZ2SZS2EN
8 L) //
0 2 | ; | é ' é | 1$

Figure L.~ Graphlical 1llustration of the
torsional lteration presented in table 2.
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Assumad correctlon,

(®)
Yo

Aaaumsd deflection, Yim)
{wnoorrected)

Corraction, n]’.'go’
to loading
Loading, m‘.tl'(o) I/,—""/“__g
T |
,B' Shear sorrection, sgo)
Shear, 31'(0)

;r I/’
L .

Mo} _ 8" oo
al )-EB’(‘I)-S{DJ

/

Daflsction relative
to besam cemnter, !‘;(1)

Carrection, ¥il)

Asgumsd deflection

-
¥{%) {corrected) -~
1 —

>

=t

—— - -
Corracted (©) ——
Q) -~
loading, lll!l/f + ~I

Daflection, y{l) /,—"
(corracted)

>

p—
-

—

NATIONAL ADVIRORY
COMMITTEE FON AEMONAUTICS

Pilgure 5.~ Satisfaction of boundary conditiona for the firat symmetricsl mode of a free-frae
bsax by the gensral method of approach.
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Assumed deflection, ¥,0)
(uncorrectad)

T

Loading, mzi(h

l Nm, s

S~

Moment, l_l'(O)

Assumed correoction, K(O)x

S

Correction, mK(O-’x
to loading

//—\—\I

- (0)
Shear, 3,

r-\—\

b Momsnt , I(O’

mo T °

TR

Nc:rmct slope

~ )

\_I

Incorract deflsction,
/—\Y]!(

AN

+(0 £ (0 0
ll )'E;lo)-ui)

Slops correction

Deflection correction, E(l)x

T

NATIONAL ADVIBORY
OOMMITTEE FOR AERONAUTION

Asgumed deflsaetion, 1'](_0 )
(oorrected)

- —

- —~—

Moment, n]('D)
= 81
|— \\\ _ (oorrgzzed)

~
~
~
"\_‘~
— A e

- ~—
s .

Deflection, Y{” ~
(corrected)

~

Figure 6.~ Satisfmction of boundary conditions for first sntisymmstricel mode of a froe-fres
beam by general method of approach.

-
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NACA TN No. 1522 ' 69

7|
a

Assumed deflection, Y{o) Assumed deflection, Y{O)
Loading, my.®) Losding, my{®)
* Assumed shear ) .
(o — 1
. Correction, So P
I F —
Incorrect shear, sl(O) } L — — — Shear, &{0)
(corrected)

- 0 ——
l_\ Moment correction, Hé ) P ~~_

T
Incorrect moment, M (0)_ - 1 -
1 S Er-

i : P Moment, M{C)
. . v (corrected)
. - —
/— Slope correction e !
<
Incorrect slo \l ~ 7 Slope
pe — ~ « _ —~"(corrected)
l’ (1)
. I Deflection correction, Y, \
Y
. Tacorrect deflection, Yl(l) \)},‘g Correct deflection, Yl(.l)

NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS

“w

(1) ' (1) _ (1)
Yl( - %o- p 29 Yl

outline of Iteration Procedurs:

(0)

(0) is assumed and loeding m¥y

(1) Deflection Y5 1s computed.

{2) Shear is determined in two parts; lkmown shear variation relative to left end, and an
assumed correction for the left-end reaction. :

(3) By successive integrations, the moment, slope, and deflection dlagrams are found
from each of the two shear disgrams.

(4) Deflection 7, must equal 7y’ ; therefore, the deflection arising from the shear
ryection 1s adjusted. The two diagrams then added give the final deflection

c
.
Y:E_l , which satisfles the deflectlon boundary conditions.

(5) Process is repeated until Y{i) o< Y{i"'l)

Pigure T.- Boundary comditions and iteration procedure for 2 beam flxed at one
end and simply supported at the other end.
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Column of
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2 m
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0
6 Yé( )
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0 2 L 6 8 10
Station NATIONAL ADVISORY

COMMITTEE FOR AERONAUTICS

Figure B.- Graphical representation of table 5.
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Figure 9.- PFundamental bending mode of a nonuniform
cantilever beam.
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Filgure 10.- Fundamental torsional mode of & nonuniform
cantilever beam.
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Relative deflection

Relatlive deflection

1.0~

-— HExact

NACA TN No. 1522

Assumed

Calculated

Frequency
~ (cps)
Exact 3.51
Calculated 3.52

i ] | i | !

0 |

\\ '2

Frequency

{cps)

Exact 9.84 "
Calculated 9.85

Flgure 1.~

NATIONAL ADVISORY
(b} Third mode. COMMITTEE FOR AERONAUTICS

Second and third bending modes of a uniform

cantllever beam.
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Figure 12.- First symmetrical bending mode of & Ires-free
beam carrying concentrated masses.

g

“J ey 3 Y Ly
Onmy

m '
Sm dx + .___L7 Y Y - Yo
- w)
(15'5 NATIONAL ADVISORY
COMMITTEE FOR AERONAUTIOS

Figure 13.- Equations for correcting assumed deflection
curve for & beam carrylng spring-mounted masses.
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Relative deflection

NACA TN No. 1522

£ = 1,147 cps

! | ] | | l ! | 1 |
.2 s AP .8 1.0

NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS

L >

Figure 1.~ First antisymmetrical bending mode of a free-free
beam carrylng concentrated masses.

NATIONAL ABDVISORY
COMMITTEE FOR AERONAUTICS

SmY'dx
¥, = Y=Y -Y
_a Stn dx
w? .

Pigure 15.- Equation for coarrecting assumed
deflection curve for a beam mounted on a

spring.
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Relative deflection

Relative deflectlion

l.o [~
.8 Frequency
(cps)
Exact 0.388

Calculated 0.388

mL,
.2
0 ' [ J
.2 AL . .8 1.0
x/L
éégi (a) Pirst mode.
1.0~ Frequency
(eps?
Exact 1.342
.5 Calculated 1.342
0 1 } § | \ | ) | i |
.2 .8 1.0
-.5F
§§§§ NATIONAL ADVISORY
-1.0 COMMITTEE FOR AERONAUTICS

' (b) Second node.

Figure 16.- First and second bending modes of a
beam-mass-spring system.



